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1 | INTRODUCTION

The development of autonomy has led to an increasing involvement of unmanned aerial vehicles (UAVs), especially quadrotors,
in applications that cannot be easily accomplished by human beings. These include search and rescue, reconnaissance, resource
exploration, forest fire prevention and military missions’?. The key challenge of UAV formation control is to identify and
address potential conflicts and interactions between members of the group, in order to ensure a consistent shape and maintain a
desired trajectory when undertaking a robotic task. In this paper, the principles of game theory, a key area of mathematics that
studies interactions between rational decision-makers?, offer a valuable framework for identifying an optimal strategy.

In a game, players can choose to take action based on not only their own strategy but also on the strategies of others.
Consequently, the optimal strategy is often determined by the player’s expectations of others’ actions. Games can be broadly
categorised as either cooperative or non-cooperative®. In cooperative games, several players share a common goal of winning
or achieving a profit that is better than that achievable by playing alone. A significant challenge in cooperative games is the
trade-off between stability and efficiency of the overall system, as discussed in Ref.”. In contrast, players in non-cooperative
games, who possess available information about their own intentions, payoff functions, and procedural details of the game, are
able to pursue their own strategies. Although each player is aware of the decisions of others, they must simultaneously make
their own decision in a symmetric competition. This may be to find optimal control parameters, as in the case of the game of
control presented in Ref.?, or to seek strategies for multiple clusters in a distributed way, as in the case of the game of clusters
presented in Ref.”. In contrast, in the game of Stackelberg, players must adopt sequential steps depending on the moves of the
leading players, as presented in Ref.®. Once the leaders have initiated their initial actions, the followers are then able to adjust
their own strategies in accordance with the leaders’ actions. This paper presents a comprehensive transformation of the problem
of cooperative path planning for multiple UAVs. The transformation involves the minimisation of a multi-objective cost function
and the solution of the problem using the Stackelberg-Nash game. Each UAV in the group is equipped with a self-executing
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FIGURE 1 The whole process of LCD-SCA.

controller that enables it to maintain the desired geometric formation. The formation is maintained while path constraints on
each UAV are considered through the cost function.

This paper focuses on metaheuristic-based approaches for solving trajectory planning problems in mobile robots. Recently,
researchers have introduced novel methods by adapting or blending metaheuristic approaches, applying these techniques to
single or multiple robot systems’ trajectory planning. The Sine-Cosine Algorithm (SCA), developed by Mirjalili in 2016, is
inspired by the triangular sine-cosine principle®. This algorithm takes a holistic approach, starting with a random solution and
progressively refining it using sine and cosine functions toward an optimal solution'”!Y. Notably, it employs both random and
adaptive variables to balance exploration and exploitation trade-offs.'2 proposed a hybrid method that combines improved cuckoo
search, PSO, and SCA algorithms, applied to trajectory planning for a multi-robot system carrying sticks. The problem models
involve multiple pairs of robots carrying sticks, emphasizing cooperation among robots. Another hybrid method introduced
by combines an enhanced GWO algorithm with the SCA algorithm. The improvement in the GWO algorithm involves
integrating a democratic rule concept inspired by societal structures. Additionally,'* presented a hybrid method merging the
kidney-inspired algorithm with the SCA algorithm to hasten the convergence of the kidney-inspired algorithm (KA). However,
due to the SCA’s inherent structure and characteristics, it faces limitations in exploration, leading to near-optimal solutions. It
encounters issues such as premature convergence and lower accuracy for certain optimization problems. In recent years, the
Linear Differential Decrement strategy (LDD) has emerged as a mathematical tool utilized for exploring new algorithms">.
LDD facilitates parameter selection within SCA, allowing for curvature adjustments during initial and terminal phases, thereby
inducing significant alterations in future update positions. Chaos, characterized as a dynamic and deterministic system, exhibits
extreme sensitivity to initial conditions and parameters. While inherently random and unpredictable, chaos also reveals patterns
or regularities. Studies have demonstrated the applicability of chaos theory in assisting meta-heuristics like PSO in determining
optimal global coverage values'®. Meanwhile, the Differential Evolution (DE) method leverages both global and local search
strategies' 18, Consequently, each search agent’s final position is determined by the amalgamation of outcomes from both local
and global search processes. To overcome these limitations, this paper proposes an improved SCA, called Linear differential
decrement, Chaos and Differential evolution SCA (LCD-SCA). It is notable that our method taken considers the synergistic
constraints on the optimal paths of each UAV in a formation to cover all requirements for formation, flexibility and safety. Unlike
other methods to formation control, the paths generated in our method are self-adaptive through the intervention of the proposed
optimization algorithm, which enables the entire group to reconfigure itself in order to better adapt to changes in the complex
environment.

A flow chart in Fig.[T|shows the complete implementation process of the proposed algorithm. The contributions and innovations
of our work are as follows:

(i) We transform the problem of cooperative path planning for multiple UAVs into minimising a multi-objective cost function
in a Stackelberg-Nash game.

(i1) We improve the SCA optimization algorithm by introducing linear differential decrement, chaos theory and differential
evolution. Compared with the original SCA, LCD-SCA has a stronger ability to find the optimum.

(iii) The proposed LCD-SCA is employed to identify the optimal strategy of the Stackelberg-Nash game, with the introduction
of obstacle avoidance potential function. The efficacy of our method in addressing the cooperative path planning problem is
validated through simulations conducted in complex environments.

The subsequent section of the paper is shown below. In Sec. 2} the original SCA, the UAV model and the cooperative path
planning problem are given. In Sec. |3| the process of the Stackelberg-Nash game is introduced with the obstacle avoidance
potential function. The proposed LCD-SCA algorithm is proposed in Sec.d The method is demonstrated and verified through
simulation results shown in Sec. 5] Finally, in Sec.[6] conclusions and future work are briefly introduced.
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FIGURE 2 Safe sets and trajectories generated based on our baseline method and the method in this paper. The 3D view of
the intersection of adjacent safe set surfaces is on the right side of the figure.

2 | PRELIMINARIES AND PROBLEM DESCRIPTION
2.1 | Problem description

A cooperative path planning problem can be defined as a situation in which the aim is to find optimal paths for all UAVs from
their respective starting points to target locations. This problem can be approached by formulating an optimization problem that
incorporates cost functions for each UAV in the team. The schematic framework for path planning optimization is shown in
Fig. 2} The safe sets and trajectories generated by the baseline method are computed through a game-theoretic cooperative path
planning. The optimized trajectories of our method are obtained through the optimization algorithm further proposed in this
paper. The cost function associated with n UAVs can thus be expressed as:

7
J(P)) =Y wili(Py) e

i=1

where P, represents the path of n UAVs, J;(P,) is the cost corresponding to constraint i, w; is a weighting factor, and 7 is
the number of constraints. The path P, is defined by a set of k nodes, represented by waypoints g, (k) = (x,(k), yu(k), 2, (k)"
k =1,2,...,K, which connect the flight path of n UAVs. The cost function J;(P,), i = 1,2,...,n, for each constraint is
determined as follows.

2.1.1 | Formation constraint

The formation constraints are determined by the desired structure of the geometric shape and the interactions among UAVs. We
define the n-th UAV as a vertex v, and its interconnection as an edge ¢; = (v,,, v,v). The interaction topology of the UAVs is
represented by a graph, denoted by G = {V, £}. Here, V represents the node set, and £ denotes the edge set, which is a subset of
V. The symbol xV denotes the edge set. In order to establish the formation, it is necessary that the graph be connected, that
is to say that for any two vertices (v,,v,) € V there exists an interconnection between them, or an edge in £. The incidence
matrix of the graph, denoted by £, has a dimension of n x s, where n is the number of vertices and s is the number of edges. The
element of the matrix is equal to 1 if the UAV is the head of an edge, -1 if the UAV is the tail of an edge, and O otherwise. This
interconnection is weighted by v, as our graph is an edge-weighted graph. In this context, R” and R’ represent the distances
perceived by the UAV as obstacles or threats (other UAVs whose distance from the UAV is below the minimum safety distance).
Additionally, dy.z. signifies the minimum distance deemed safe for UAVs to navigate between themselves or obstacles. This
distance is defined by the user.
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The formation error for edge (v,, v,/) is computed from g, — g, — g, ,- The total formation error can be expressed via the
incidence matrix as

E= Z Yo' ”gn -8y - gn,n: ||2
nn' €E

= (g - gr)T ZﬁﬁT (g - gr)

=|lg—gll sppr

2

where D=D ® 5 and D = diag(,,’ ) is a diagonal weight matrix of dimension s X s, L = £ @ I, where the operator ® is the
Kronecker product.

The Laplacian of the graph, denoted by W, is defined as the matrix LDLT. It is symmetric and positive semi-definite. The
Laplacian of the graph, denoted by W, is defined as the matrix LDLT 1tis also symmetric and positive semi-definite. This result
is cited in Ref.!?. The formation error can be expressed as E = ||g — g||y- The cost function associated with the formation
constraint for UAVs is defined as

K
hP) =) llgk) -glly, 3)

k=1

2.1.2 | Path cost

In the planning of a path, it is necessary to minimize the length of the path in order to save time and energy, particularly when
the objective is to utilize a low-cost UAV. In autonomous operations, a path typically comprises a list of waypoints, which are
uploaded to the UAV as references for the flight controller to track. This is in accordance with the findings of“”, which states
that a path is a series of waypoints that are uploaded to the UAV as references for the flight controller to track. A path with K
waypoints can be represented by a set of K — 1 line segments connecting the waypoints. The path length is then simply the sum
of the aforementioned segments. The cost representing the length of path » is then computed as follows: Denoting g, (k) as
waypoint k of path n, the cost is computed as:

K-1
P = llgalk+ 1) - gu(®)|2 “
k=1
22 | Model of UAV
R" with some obstacles O = {01, 0,,..., Onv} denotes the Euclidean space n. The Euclidean space of n x m real matrices is

denoted as R"*"™, Each UAYV in the group is represented by the following dynamics

X; = v; COS 7; COS Y;
Yi = V; €08 7y; sin;
Zi =—v;siny;
. Ti-D; .
Vi= ——— —gsInvy; 5
m;
. Lijcosu; gcos~;
l m;v; Vi
¢. _ Lisiny,
= ———
m;v; COS 7y;

where g; = [x;, v, 21" and v; = [X;,V:, 21" represent the position and velocity vectors of the i-th UAV in the inertial frame,
respectively. The location of the formation is defined by g = [ng, gl g,ﬂ T, where N is the total number of UAVs in the
team. To define the formation shape, a set of reference positions g, = [ngr, gZT, s g{,] Tis given, where g, = (x,l,, Vo, z,,,)T is
the reference position of the n-th UAV. The desired vector between two neighbors n and n' is computed as g, =8n 8, The
subscript i is used to differentiate between various UAVs for each scalar or vector. §; = [v;,y;,¢;]” is a vector comprisiflg the

airspeed v;, flight path angle ~;, and heading angle 1);. Within this context, m;, g, and y; denote the mass, gravity acceleration,
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and bank angle for each UAV, respectively. Additionally, T;, L;, and D; represent the thrust force, lift force, and drag force,
respectively.

3 | GAME THEORY FOR COOPERATIVE PATH PLANNING

Given the cost function J(P,) defined for each UAYV, the cooperative path planning problem can be stated as finding paths P,
that simultaneously minimize J(P,). Since the value of J(P,) depends on the path P, generated for UAVs itself as well as other
paths of the remaining UAVs in the team, finding optimal solutions remains a challenging problem. To address the challenge of
cooperative path planning for UAVs, we propose a game-theoretic enhanced SCA algorithm comprising two stages. Initially, a
Stackelberg-Nash game is formulated from the cooperative path planning problem. Thereafter, an enhanced SCA algorithm is
developed to resolve the Stackelberg-Nash game, thereby identifying optimal paths.

3.1 | Stackelberg-Nash game for cooperative path planning

We first introduce some assumptions.
Assumption 1. The continuous solution space of infinite states maps to a finite discrete set.
Assumption 2. All UAV models are considered as particles.

Assumption 3. Each UAV within the group is identified as either a decision-maker or player. Consequently, the UAVs that
assume leading and following roles are respectively regarded as the primary decision-makers and those that follow.

Assumption 4. The strategy of the n-th UAV is defined by its path, denoted by P,.
Assumption 5. The optimal payoff for the n-th UAV is its cost function, denoted by J(P,,).

The Stackelberg game is a theoretical model designed to address the issue of asymmetric competition between a dominant
decision-maker and their subordinates. In this game, the leader initiates the movement. Subsequently, the followers must
determine their respective strategies in response to the leader’s decision, as outlined in Ref.2l. Consequently, the Stackelberg
game can be employed to model the interactions among the UAVs.

Now, the Stackelberg game for UAVs can be described as Gg = ((l, ), (ag, o), (U, Jf)), where (/,f) is a set of players with the
leader / and followers f defined as a subset f = (f1, /2, . . ., fv). The pair (ay, o) stands for the strategy sets of the leader a; and
the followers oy. They are defined respectively as a; = (Pl] P, .. P;Z), where P, is the decision strategy made by the leader
(e=1,2,...,%),and of = (Pf] Pp, . PIN), where oy, = (Pn] Py, ,Pnz) represents all > decision strategies made by
the n-th follower. The set (J;, Jy) is the payoffs.

Let P/ and P} = (PJ?‘I P ,PJi"-N) be respectively the best strategy of the leader and of the followers, the Stackelberg strategy
is defined as ag = (P}, Pf), which satisfies correspondingly

Jr (P P{(P)) < Jy (Pr. Pr(Pp)

6
Ji (P, PF(P)) < Ji (P, PE(P)) ©

The relation P;(P;) represents the strategy Py of the followers as a function of the leader’s strategy P;. From Eq.(6),
ag = (P, Pf) can be obtained as
P = ai)gemin Jr
[e7
L ™)
Py = argminJ;
Pica;

In addition to interactions between the leader and followers, it is also necessary to consider those among the followers
themselves. The Nash game is employed for the purpose of modelling, utilising the symmetry inherent in the roles of the players,
as evidenced in Ref.?2. In a Nash game, each player is assumed to be aware of the optimal strategies employed by their rivals,
and no player can achieve a higher payoff by modifying only their own plan. The Nash game thus provides an approach to
obtain optimal results for all symmetric players, which represent the following UAVs. The Nash game can be expressed as
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O ® Follower
® y\\‘ l T ® Leader
"Nach Cama| <—— //Stackelber?g N\ ——
:-N— SE (ialfej — > Game _ /) —
‘4’ —» Profit
[ l T
® —> Strategy

Path Planning

<~~._~ Desired trajectory . Targetarea A Obstacle

FIGURE 3 Overview of Stackelberg-Nash game and path planning.

Gy = (f, oy, Jy). The Nash game is defined as the vector 04; = (P}‘l R P}; s P;V ), which satisfies the following condition:

VP, € o, J;,(P;, Pr) < J;, (P, Pf) (®)
where Pj}‘; = (P;l, o ’Pft—l , P};m o ,P;N) is the optimal strategy set of P,’s rivals. The Nash strategy is obtained as
P = arngin Jr (Py,, P};) 9)
fn

By combining the two above models, the cooperative path planning problem for multiple UAVs can be represented by a
Stackelberg-Nash game illustrated in Fig. [3] The game is expressed as

G= ((l’f)s(al’ Oéf), (Jls Jf), (f’ O[f, Jf)) (10)
The Stackelberg-Nash strategy, a* = (P, P}] s P;Z e ,P}:, ), is defined to meet the conditions:

VP, € oz, J;, (P, PE(Pp), P (P)) < J;, (P, Po,(P)), P} (P1))
JIPT, PF(P))) < Ji(Py, Py (Pp)

an
3.2 | Obstacle avoidance potential functions

To ensure the flying safety of each UAV i, it is necessary to assume that the UAV is capable of promptly detecting impediments
upon entering its sensory domain. Following this, the collection of neighbouring obstacles for UAV i is ascertained by

Ny ={ke{01,...,n}: |lgi—gll <R} (12)
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where g represents the virtual obstacle agent’s position, generated by projecting UAV i onto the boundary of the nearby obstacle
Oy € O. To provide further clarification, the position of this virtual obstacle agent, denoted as g, can be calculated by

gf:argmin”pok—pi , ke{l,2,...,n,} 13)

Po; €0k

where py, is the position of any point on the boundary of the obstacle O.
This study investigates protruding obstacles, assuming an obstacle Oy with its center at c; and a radius of influence denoted as
re. The position gf of the virtual obstacle agent, along with its derivative g¥, can be represented as

k " 8i ( Tk )
g =—"—+|1-7—— | &
" g —cekll llgi — cill

Tk |:I’; (gi—c)(gi- Ck):| .

|gi —cil] llgi —cxl? l

(14)

gff=|

Besides the obstacles within the flight space, it is important to note that when the relative distance between two unmanned
aerial vehicles (UAVs) falls below the minimal safety distance, one UAV may present a security risk to the other. Consequently,
UAV i views UAV j as a danger requiring obstacle avoidance if ||g; — g;|| < R'. Likewise, the collection of adjacent UAVs for
UAV i can be obtained as

N;={j € WO} : [lgi-gll <R} (15)

This study develops obstacle avoidance potential functions and obstacle avoidance potential functions to assure the safety
of UAV flight, after determining the sets of adjacent UAVs and adjacent obstacles for each UAV. Notably, prior potential
functions like those presented in Ref.?*?%, constructed using the 2-norm, lack differentiability when two UAVs coincide. Drawing
inspiration from*2%, we propose the implementation of a smooth pairwise potential in order to enhance obstacle avoidance.
Leveraging the adjacent sets of UAVs and obstacles for UAV i, two distinct potential functions are formulated

| 1 llei-gillo
=y Y (sl =5 X [ e

kEN? 1 N Hgdm?\‘la "
1 o
N3 vls-sl)=3 3 [ e
jeny jeny e
where
—_ dyae o
‘”””(dsn) .
safe ||o \/1 + (S— ||dsaf€H0)
L s € [0,h) an
1 —h
i) o
0. otherwise

where p(-) represents an activation function smoothly transitioning between 0 and 1, determined by a parameter 0 < / < 1.
Consequently, ®(s) smoothly diminishes to zero at s = ||dyq||o and maintains a value of zero for all s > ||dyq||». Introducing a
flag N; serves to indicate the presence of obstacles or threats within the perception area of UAV i. Specifically, N; equals O if
N? UNY =0, and X; equals 1 otherwise.

To find a*, an improved SCA algorithm is developed as described in the following.

4 | ANIMPROVED SCA ALGORITHM

From the above, the UAV cooperative path planning is reduced to finding the strategy a* of a Stackelberg-Nash game that fulfills
all requirements of conditions Eq.(TI)) to bring the game to its equilibrium. However, simultaneously solving inequalities (TT) is
challenging and even impractical for analytical methods as involving non-differentiable cost functions J(P,) and dependent
variables P¢(P;). Instead, heuristic optimization techniques based on swarm intelligence are more viable and computationally
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efficient for this problem. Among heuristic optimization techniques, SCA has been widely used for path planning problems as
being effective in the optimal search. In this paper, an improved optimization algorithm based on SCA is developed to find the
best strategies for the Stackelberg-Nash game. Those strategies represent the optimal paths of the UAVs.

The original SCA has limitations in the exploration phase, making it difficult to explore efficiently and converge prematurely.
In this paper, we propose a combination of Linear differential decrement strategy, Chaotic and Differential evolution SCA
(LCD-SCA) based on the original SCA strategy. In the proposed algorithm, the linear differential decrement strategy improves
the search efficiency, chaotic mapping averages the randomness of the search, and differential evolution enhances the diversity
of the exploration. This enables the proposed algorithm to reach every corner of the search space in a shorter time.

4.1 | Model of the Sine-Cosine Algorithm

The SCA utilizes fewer operators than its peers, effectively improving the balance between exploring new options and exploiting
known ones. To outline the algorithm’s process, an initial aggregate is generated randomly through the use of Eq.(I8).

Xi = Xmin + Xmax —Xmin) rand (1,D), i€ {1,2,...,P} (18)

where X; represents candidate solution i, while X,,;;, and X;,,,x denote the minimum and maximum boundaries for solutions. The
variables D and P stand for the dimensions of the problem and the population size, respectively. Once the population undergoes
evaluation through a fitness function, an iterative process commences. Within this process, solutions are updated using Eq.(I9)

N ) <0.5

&O+D={&®+h$MDHm&ﬁ%Xﬁ) 08 (19)
£ 4 = .

Xi(1) + ry cos(ry) | rs X (1) — Xi(0)

where X;(¢ + 1) denotes the possible solution i at iteration ¢ + 1 and the symbol X;(#) represents the candidate solution i at iteration
t, while X, () denotes the optimal solution at iteration ¢ within the population. The calculation of r; is derived from Eq.(20)

r=a-—— 1 (20)
tmax
where 7 denotes the current iteration, #,,,x represents the maximum number of iterations, while a remains constant. The variables
denoted as 7, r3, and r4 are assigned random numbers that are limited to the intervals [0, 27], [0, 2], and [0, 1], respectively. The
newly generated population is subjected to assessment within the fitness function, and this iterative procedure continues until the
conclusion criterion is met. After the iterations are finished, the optimal solution is documented.

While the implementation of SCA is straightforward and necessitates a restricted set of parameters, it is not without its
limitations. These limits encompass constraints during the exploration phase, early convergence, and suboptimal precision in
some optimization issues. Furthermore, the SCA algorithm endeavors to identify an optimal and efficient solution within a
suboptimal portion of the search space by employing a sophisticated computational approach.

4.2 | Linear differential decrement strategy

As the SCA iterates, the parameter r| gradually decreases, leading to a slowdown in search velocity. This slowdown enhances
the algorithm’s ability to explore locally while diminishing its capacity for global exploration. In Eq.(20), the slope remains
constant, ensuring a consistent change in search speed. However, when initial iterations don’t yield superior points, subsequent
iterations combined with the rapid decrease in search velocity often cause convergence toward a local optimum by the algorithm’s
conclusion. To refine the classical linear decrement strategy for r|, we introduce differential equations to formulate a novel
decrement strategy, which brings us to:

dry a
2 .t 21
dr o @D
a a t
/ dry = 5— / Tdt 22)
r tmax 0
r=a—— .7 (23)

2
max
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From Eq.(23), it’s evident that there exists a negative correlation between r; and , where r; follows a quadratic pattern with
respect to ¢. During the initial iterations, r; undergoes gradual changes, aiding in the identification of a local optimum meeting
specific conditions. However, as the iterations progress towards the maximum limit, 7| accelerates its rate of change, swiftly
converging towards the global optimum after identifying the local one. This acceleration greatly enhances operational efficiency
once the local optimum is found.

43 | Chaos theory

As shown in the previous subsection, the values of r4(7 + 1) at the next iteration is determined by r4(f) € [0, 1] at the previous
iteration, while in LCD-SCA, ry is substituted by two chaotic maps?’, Eqs. and , which correspond to logical map and
tent map, respectively.

rat+ ) = g @O -], (@) € [0, 1] (24)
%?, rat) < B

naen=3" o (25)
=5 rq(t) > B

and according to?Z, it is clear that tent map possesses better performance, so we use Eq..

While the chaos theory contributes to achieving a broader spectrum of parameters and solutions, it’s crucial to recognize that
within the search process, X, might not be updated a specific number of times. This situation could lead X, to converge toward a
local optimum. To enhance search efficiency and circumvent this local optimum scenario, this paper integrates the DE algorithm.
This combination aims to mitigate these limitations and facilitate improved exploration of the solution space.

44 | Differential evolution

Eqs.(27)-(29) represent the mutation phase in the DE. For any search agent indexed as i, its neighbors are encompassed within
the interval [i — k, i + k], where k is a non-zero integer within the range [1, (n — 1)/2]. When & is set to 1, the neighborhood
comprises vectors X;_;(t), X;(¢), and X;,1 (7).

X; « 1s the place with the highest fitness value in close proximity to the search agent i. Two matrices, y; and ~y,, are employed
to increase the randomness of the search procedure, and they are both calculated as:

v =X rand(A, W) (26)

where the constant \ has been established at a value of 0.0001. A denotes the size of the population, and ¥ reflects the dimension
of each search agent. The calculation of the local donor vector for each search agent i at iteration ¢, denoted as L;(t), is performed
in the following

Li(0) = Xi() + 71 - [Xiw = Xi(D)] +72 - [Xp, — Xp, ()] (27)
where P; and P, are two random values chosen from [i —k, i + k]. X; . is the best solution for the current global whale population,
so the global donor vector for each search agent i at the iteration ¢, denoted by G;(¢), is computed as:

Gi(t) = Xi + F - [Xi = Xi(1) + X, (1) — Xp, (1)] (28)

where R, and R, are two random numbers chosen in the current whale population. F is a predefined scale factor. Combining
Li(r) and G;(t) with Eq.(29) we have the final donor vector V;(?):

Vi) = wGi(1) + (1 - w)Li(n) (29)

where w € (0, 1) is a predefined coefficient. The diversity of the population is further improved after the donor vector is computed

in the mutation. U;;(f) denotes the value of dimension j for each search agent i at the iteration ¢, which is updated from the
following rule:

Vi), rand(A, W) > Cyyo0or X =j

%@={JO W2 e r 2 (30)

X;;(t), otherwise
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Algorithm 1 LCD-SCA algorithm
1: Initialize the population of X;(i=1,2,---,n)

Initialize control parameters Crye, F, tmax, P and a

w N

X < generate initial population using Eqg. (18]
Calculate r(t+1) with Eqg. (25])

S

5: Initialize the fitness Fpey < 00
6: for i=1:P do

7: if f(X;) < Fpey then

8: X < X;

9: Fbest <_f(Xl)

10: end if

11: end for
12: for t=1:tp. do

13: Update r; using Eqg. (23))

14: for i=1:P do

15: rp, I3 < random numbers

16: X; < update the solution i using Eqg. (19)

17: Generate the final donor vector with Eg. (29)

18: Generate Ui(f) with Eg. (30)

19: Update position of each search agent with Eqg. (31)
20: X; < check if the population is within the bounds [Xmin,Xmax]
21: if f(X;) < Fpesy then

22: X X,

23: Fbest <;f()(t)

24: end if

25: end for

26: end forreturn X., Fj.

where C,4, denotes the crossover rate. If a random number exceeds the value of C,., U;;(?) is modified by the variable V; ().
Furthermore, when the random dimension &’ is equal to j, U;;(?) is also modified by V;;(¢). The purpose of this is to prevent
scenarios in which the initial value of C,4, is too small, which would invalidate the cross component. Alternatively, it is modified
by X; ;(#). During the selection process, the search agent i is chosen based on the position with a higher fitness value, denoted as
Xi(t+1).
X4 D)o {U,(t), FW) < FXi(0) a1
Xi(), [Xi@®) <fUiD)
Algorithm[I] presents the overall process for LCD-SCA. Algorithm [2] presents game theory and LCD-SCA implementation for
followers and leader path planning.

5 | SIMULATION
51 | Basic setting

To demonstrate the efficacy and superiority of the LCD-SCA approach, we integrate it with the classical artificial potential field
(APF) algorithm, employing it for trajectory planning challenges. Notably, the APF algorithm, as cited in Ref.?8%, frequently
encounters issues related to local optima. Moreover, APF allows for 3D simulation scenarios, presenting a robust validation
framework to mitigate the likelihood of solutions converging to local optima.

The configuration of the simulation experiments is described below: in a 100km x 100km x 20km x —y — z space, the basic
setup of the UAV and obstacle positions is shown in Fig. E], where the obstacle influence radius X € [5,20] and Y € [5, 15].
The UAV model is used in this paper. The UAV has a minimum speed of 50 meters per second, a minimum turning radius of 2
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Algorithm 2 LCD-SCA Implementation for Followers and Leader Path Planning

Input: Leader’s strategy P;, map, and initial path planning information

1:

=W N

Record P/i;(tf)
Update Py (tr)
: end for

: Obtain P}‘(Pl)

: for £1=0:tm. do
Calculate the leader’s profit Jl(Pl,P}‘(Pl))

Record Pj(#)
Update Pi(t;)

: end forreturn (P;",P]’f)

Initialize LCD-SCA parameters

: Set the number of iteration # =0 for followers and # =0 for leader
Generate random follower’s and leader’s strategies

: Obtain the initial optimal follower’s strategies P;(y)

: for ty=1:tmax do

Recall Pr(ty—1)

Calculate Jﬁ?(P],Pﬁl(tf),P}:(tf—l)), for n={1,2,...,N}

kilometers and a minimum flight altitude of 1 kilometer. In the multi-UAV trajectory planning problem, the minimum safety

distance between UAVs is [5, 5,2]7 km. Based on the simulation scenario, the initial position of UAVs, the location and range of
influence of the obstacles, and the location and orientation of the targets are configured. Instead of considering a single state X(r)

in obstacle avoidance, we use the distance between the safety set of spheres and obstacles as a obstacle constraint.

To evaluate the performance of LCD-SCA comprehensively, a mixed static and dynamic obstacle scenario is created with
several fitness functions, including unimodal functions (f; —fs) and multimodal functions (fs —fo)"5 in Table The performance
of the LCD-SCA method is evaluated using a set of 10 fitness benchmark functions. This evaluation is compared to the original

SCA® as well as two other optimization algorithms. This incorporates both self-adaptive differential sine-cosine algorithm
(sdSCA)=!" with a hybridization of whale optimization algorithm, sine-cosine algorithm, levy flight (WOASCALF)"2.

TABLE 1 Description of benchmark functions

Function Dim  Iteration  Equation
Sphere 30 100 A =YL X?
Sumsquares 30 100 LX) =0, iX?
Step 30 100 X0 =Y"1,[X; +05]?
Quartic 30 100 fa(X) =YL, iX} + random[0, 1)
Rosenbrock 30 100 fs(X) = S 100X 4 — X2) + (Xi — 1)?]
Schwefel 226 30 100 fs(X) = S0, —X;sin (vVIX)
Rastrigin 30 100 X)) = :’21 [Xl.2 — 10 cos(2mX;) + 10]
2
Griewank 30 100 fs(0) = 21 gom5 — [Ty cos(Z5) + 1
Ackley 30 100 fo(X) = —20exp (-0.2. /iy, X}) —exp (% P cos(27rX,-)> +20+e

Each algorithm has 100 iterations and a dimension of 30. The calculation of average errors is presented in Table



12 |

TAYLOR ET AL.

TABLE 2 Comparison LCD-SCA with SCA, sdSCA and WOASCALF for unimodal and multimodal benchmark functions
(These results are average errors of 100 iterations).

Function SCA sdSCA WOASCALF LCD-SCA
fi 9.23E+08 1.74E+05 9.31E+06 3.14E+04
h 5.02E+10 3.45E+00 4.98E+05 5.44E-01
f 5.53E+401 3.41E+00 5.25E+00 2.11E-01
i 2.07E-01 8.31E+01 4.48E-02 6.84E-02
fs 4.25E+02 1.15E+02 5.13E+401 3.39E+01
fo 4.78E+04 2.21E+04 3.73E+03 1.56E+01
fr 1.21E+02 4.01E+00 2.58E+01 1.00E+01
s 2.71E-01 8 43E+01 4.43E-02 6.97E-02
fo 1.27E+03 4.82E+02 1.68E+03 9.73E+02
52 | Convergence analysis

Table [2] demonstrates that the algorithm suggested in this study outperformed the original SCA in all benchmark functions.
The enhancement has notable efficacy in both unimodal and multimodal functions, as well as in the case of fs. The improved
effect was comparatively less pronounced in other functions. Furthermore, in comparison to other algorithms documented in the
literature, it can be asserted that this particular algorithm exhibits a high level of efficiency and competitiveness. Two functions
were selected from the unimodal and multimodal functions, respectively, for the mean fitness box plots, in order to provide a

meaningful comparison. Figure [ displays box plots of SCA and LCD-SCA for the functions f3, fs, f7, and fo.
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FIGURE 4 Box plots of SCA and LCD-SCA for the function f3, fs, f7 and fo.
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Based on the box plots, it is evident that LCD-SCA outperforms the original approach in terms of low variance and median
across most functions, and it also exhibits greater stability. The results are further supported by the maximum and minimum data
obtained from both techniques.
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TABLE 3 Comparison of the average iteration running time for various algorithms.

Dimension SCA sdSCA WOASCALF LCD-SCA
20 0.8931 0.8817 0.8793 0.8803
30 2.5423 2.3258 2.4921 2.3941
50 14.291 16.236 13.114 12.231
100 43.241 40.926 41.984 40.884

Furthermore, Fig. [5|displays the convergence curves for the four methods applied to the benchmark functions f3, fs, f7, and fo.
Upon examining the optimal fitness curves, it becomes evident that the original SCA has significantly enhanced its optimization
capability and convergence speed. The findings indicate that the LCD-SCA algorithm exhibits superior performance compared
to the other optimization techniques.

10 T T T T T T T T T
SCA SCA

sdSCA sdSCA

5 WOASCALF ) WOASCALF
107 1 LCD-SCA 7 107 H LCD-SCA

Best fitness
Best fitness

10° 107 F AN B
0 2l \
10° ! 10" ! !
0 0 20 30 40 50 60 70 8 90 100 0 10 20 30 40 50 60 70 80 90 100
Iteration number Iteration number
(@) f3 ®) f5
10' 10
SCA SCA
SASCA sdSCA
WOASCALF . WOASCALF
LCD-SCA 100 H LCD-5CA

Best fitness
3
Best fitness
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Iteration number Iteration number
© fr d fo

FIGURE 5 Comparison of convergence curves of LCD-SCA and other four algorithms obtained in some benchmark functions.

53 | Running time comparison

Additionally, as part of evaluating algorithm performance, we conducted comparative analyses of the execution times between
LCD-SCA and other optimization algorithms. Table 3| presents the average time required for each iteration across the various
algorithms studied. Each algorithm underwent 100 iterations in dimensions 20, 30, 50, and 100. We repeated each experiment
10 times to derive the average iteration runtime, as detailed in Table @ The outcomes indicate that for dimensions 20 and 30,
the average runtime of LCD-SCA aligns closely with the original SCA. Notably, as the dimensionality increases, LCD-SCA
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demonstrates superior performance compared to other optimization algorithms, showcasing notably improved average iteration
runtimes.

54 | Cooperative path planning

To show the merit of the proposed framework using the Stackelberg-Nash game for UAV cooperative path planning, we compare
it with our previously proposed path planning method™?. The paths of the four UAVs are shown in Fig. |§| (trapezium formation).
As shown in Fig.[6(a)} despite the path planning and obstacle avoidance accomplished by the baseline approach, it is unable to
maintain a relatively stable formation during the movement. As shown in Fig. [6(b)] it can be seen that the Stackelberg-Nash
game maintains a trapezoidal-like formation throughout the flight, while both intervehicle collisions and obstacle collisions can
be avoided. In addition, we adjusted the formation formation to a diamond formation as shown in Fig.[7] Further, we adjusted
the position of the obstacles in the scene and the formation (rectangular formation) as shown in Fig.

z/km

x/km 100 x/km

L 20 40
y/km 0 y/km
&/ UAV and path = Obstacle o——o Connection ® Follower ® Leader  ------ Connection
A Target i / Safety set A Target © % Obstacle ‘/ /; Safety set
(a) Baseline (b) Our method

FIGURE 6 Scenario 1 (Trapezium formation): Schematic diagram of the trajectory simulation of UAVs.

z/km

20

0 y/km 0 y/km
£/ UAVandpath 7/ = Obstacle o——e  Connection ® Follower ® Leader  ------ Connection
A Target \‘ Safety set A Target /T Obstacle Safety set
(a) Baseline (b) Our method

FIGURE 7 Scenario 2 (Diamond formation): Schematic diagram of the trajectory simulation of UAVs.
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FIGURE 8 Scenario 3 (Rectangular formation): Schematic diagram of the trajectory simulation of UAVs.

6 | CONCLUSION

In this paper, a novel method based on game theory and LCD-SCA optimization algorithm is proposed for solving the cooperative
path planning challenge for multiple UAVs in a desired formation configuration. The UAV cooperative path planning problem
is solved by identifying the optimal strategy for the Stackelberg-Nash game. The conventional SCA method is enhanced by
incorporating linear differential decrement, chaos theory, and differential evolution, and the proposed LCD-SCA method is
integrated into the path planning problem. An optimal strategy for finding the game by minimising the global cost function via
the LCD-SCA method is integrated. The proposed method can generate path with safety guaranteed for flexible UAV's formation.
In this paper, the proposed LCD-SCA is compared with the recently proposed optimization algorithms in terms of convergence,
running time through several benchmark functions. Three cases of path planning are compared with our previous work as a
validation of the method. Our future work will focus on solving the Nash equilibrium pursuit-evasion game problem through a
probabilistic approach.
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