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A B S T R A C T

The paper aims to solve the problem of multi-agent path planning in complex environment using optimization
algorithm. To address the issue of local optimum and premature convergence, a new method is proposed
based on the whale optimization algorithm, combining the chaotic initialization, the reverse search and
the differential evolution methods. It is theoretically proved that this algorithm is globally convergent in
probability. When applied to path planning problems, the proposed optimization algorithm can effectively find
a globally optimal and smoother path. Through simulation experiments with multi-UAVs, it is demonstrated
that the proposed algorithm has better performance than the state-of-the-art methods in environment with both
static and dynamic obstacles, reflecting the global convergence and robustness of the proposed algorithm.
1. Introduction

With the development of autonomy, unmanned aerial vehicles
(UAVs), especially quadrotors, have been more and more involved in
applications that cannot be easily accomplished by human beings [1,2],
such as search and rescue, reconnaissance, resource exploration, forest
fire prevention and military missions [3–5]. As one of the fundamental
issues of achieving autonomy in UAVs, the subject of path planning
seeks to establish an optimal and viable path in complex environments
under certain safety constraints [6]. Compared with mobile robots, the
path planning of aerial robots is more challenging due to its modeling in
three-dimensional space and the risk of loss-of-control after collisions.

The robotics community has conducted substantial study on opti-
mization algorithms to solve the issue of path planning and smoothness
for UAVs in complex 3D environments [7]. Among them, meta-heuristic
optimization algorithms are showing attractive features in many en-
gineering applications [8–10]. Most heuristic algorithms are inspired
by natural phenomena or physics laws in the nature. Considering the
complexity of the search space and the stochastic nature of the opti-
mization process, recent heuristic algorithms are proposed to improve
the balance between exploration and exploitation, while preventing
local optimum and low computational efficiency [11–13]. Santana
et al. [14] developed a trajectory planner for a multi-robotic system
based on Generic Algorithm (GA) through an approach that combines
solutions for team orienteering and multiple backpack problems. Some
studies reveal that the GA presents some limitations in its application to
path planning—such as a lack of guarantee to obtain optimal solutions,

∗ Corresponding author.
E-mail addresses: zhang_ye@nwpu.edu.cn (Y. Zhang), yutong.zhu@mail.nwpu.edu.cn (Y. Zhu), haoyuli@nwpu.edu.cn (H. Li).

difficulty in tuning parameters such as mutation rate and population
size, and low speed of convergence [15]. Fan and Akhter [16] presented
a Particle Swarm Optimization (PSO) for UAV trajectory planning using
a time-varying inertia weight approach, obtaining good results. Song
et al. [17] developed a new strategy to plan a smooth path for mobile
robots through an improved PSO algorithm in combination with a
continuous high degree Bezier curve. There are also studies on other
artificial intelligence approaches, as in the work by Liu et al. [18], who
designed a particle swarm optimization-trained fuzzy neural network
algorithm to solve the path planning problem. An algorithm inspired by
social-class pigeons was presented for solving multi-UAV path planning
problem by [19], and a time stamp segmentation path planning model
was developed to simplify the handling of multi-UAV coordination cost.

As one of the nature-inspired heuristic methods, the Whale Op-
timization Algorithm (WOA) was proposed and developed in recent
years [20,21], which mimics the hunting behavior of humpback whales.
Compared with other heuristic algorithms, WOA is found to have good
optimization capabilities [22,23]. Due to its ease of implementation
and small number of parameters [24,25], WOA has been successfully
applied to various engineering optimization problems [26,27], such
as parameter estimation of photovoltaic cells [28], radial distribution
networks for optimal capacitors [29], wind speed prediction [30],
spam profile detection [31] and so on. By utilizing WOA, premature
convergence and local optima can be avoided, thus improving the
convergence speed and computational accuracy [32].
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However, by exploring the optimization mechanism, it is found that
the search agent of WOA can only approach the optimal solution in the
second half of the iterative process. Besides, current methods [33] lack
theoretical proof in global convergence so that its optimality cannot
be fully guaranteed in a global scale. To address these shortcomings
and to achieve good performance in dealing with the problem of global
optimization, an improved algorithm based on WOA is proposed in
this paper. The algorithm, which is abbreviated as Reverse Search
Chaos Differential-evolution WOA (RSCDWOA), is based on the reverse
search (RS) and the differential evolution (DE) methods. Considering
the problem of multi-agents path planning with unknown obstacles
in 3D scenes [7], RSCDWOA is applied to prevent the whole path
falling into local optimum. Compared with previous work on path
planning problems, the main work and contributions of this paper are
summarized as follows:

(i) It is theoretically proved that the RSCDWOA, algorithm is
globally convergent with the addition of perturbation vectors, which
demonstrates the robustness of the algorithm. It is the first time a
convergence proof is given for the whale optimization algorithm and
its extensions.

(ii) In simulation, the algorithm is combined with the classical
Artificial Potential Field (APF) algorithm. In path planning, RSCD-
WOA Artificial Potential Field (RSCDWOA-APF) is shown to achieve
global optimal and smooth trajectory. It is also compared with other
algorithms to illustrate the superiority of the proposed RSCDWOA.

The rest of the paper is shown below. Section 2 introduces the
problem to be solved in this paper based on a basic WOA method.
In Section 3, the RSCDWOA algorithm is proposed. The global conver-
gence of the proposed algorithm at different stages are mathematically
proved in Section 4. In Section 5, several simulations are conducted
to verify the global convergence of the new algorithm, and the su-
perior performance of the proposed algorithm is demonstrated. The
conclusion of this paper is summarized in Section 6.

2. Problem description and preliminaries

2.1. Problem description

As shown in Fig. 1, this paper considers the problem of multi-UAVs
reaching a target in a complex environment containing dynamic ob-
stacles. The path planning for multi-agent systems involves minimizing
the movement of agents through intricate environments, ensuring they
reach their destination step by step while avoiding collisions with both
static and dynamic obstacles, as well as other robots [34]. This process
aims to determine the optimal path with the least cost for each agent,
and the mathematical calculation can be employed to determine the
subsequent position of UAVs

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝑣𝑖 cos 𝜃𝑖
𝑦𝑖(𝑡 + 1) = 𝑦𝑖(𝑡) + 𝑣𝑖 sin 𝜃𝑖

(1)

where (𝑥𝑖(𝑡 + 1), 𝑦𝑖(𝑡 + 1)) denotes the subsequent position coordinates
of UAV 𝑖, while (𝑥𝑖(𝑡), 𝑦𝑖(𝑡)) represents its current position coordinates.
The velocity and radial position of UAV 𝑖 are denoted by 𝑣𝑖 and
𝜃𝑖, respectively. The optimization process relies on these kinematic
characteristics of UAVs.

The following requirements should be satisfied. First, the planned
paths should be globally optimal and avoid falling into a local optimum.
Secondly, the maximum curvature of the path should be minimized
considering the requirements of practical flight. Thirdly, the planned
path should show some robustness in face of stochastically dynamic
obstacles. Considering the flight characteristics of UAV and the safety
in the flight process, the evaluation function of a flight path can
be defined by calculating several costs regarding the aforementioned
requirements [35].

Despite the strong optimization capability of WOA compared to
other optimization algorithms, WOA ultimately creates only near-
optimal solutions, which reduces the diversity of solutions and halts its
2

Fig. 1. Schematic diagram of path planning and optimization in complex environment.

exploration [36]. Therefore, the aim of the paper is to propose a new
optimization algorithm that converges globally in probability to find
optimal paths for multi-UAVs that satisfies the above requirements. To
achieve this, the following assumptions are imposed.

Assumption 1. The mutual collisions between UAVs are not consid-
ered.

Assumption 2. The continuous solution space of infinite states maps
to a finite discrete set.

Assumption 3. All UAV models are considered as particles.

2.2. The Whale Optimization Algorithm (WOA)

The WOA method is a bionic algorithm that simulates whales’
hunting behaviors. In WOA, the hunting process is divided into two
steps: encircling the victim and bubble-net attacking. The position of
the encircled prey is modified based on the current optimal solution.
In the initial phase, each search agent is randomly put in the search
space, and the closest search agent to the target prey is picked as
the best candidate solution. The remaining search agents then modify
their positions by approaching the top candidate solution in succeeding
cycles, as demonstrated in the following equations:

𝐷𝑖(𝑡) = |𝐶 ⋅𝑋∗(𝑡) −𝑋𝑖(𝑡)| (2)

𝑋𝑖(𝑡 + 1) = 𝑋∗(𝑡) − 𝐴 ⋅𝐷𝑖(𝑡) (3)

where 𝑡 indicates the current iteration, 𝑋𝑖(𝑡) represents the current
position of the search agent 𝑖(𝑖 = 1, 2,… , 𝑛) at time 𝑡, and the best
candidate solution is 𝑋∗(𝑡). 𝐷𝑖(𝑡) is the search agent’s distance from 𝑖
and 𝑋∗(𝑡) at time 𝑡. 𝐴 and 𝐶 are two vectors of coefficients that are
calculated with Eqs. (4)–(5).

𝐴 = 2 ⋅ 𝑎 ⋅ 𝑟 − 𝑎 (4)

𝐶 = 2 ⋅ 𝑟 (5)

𝑎 = 2 − 2𝑡
𝑡max

(6)

During iterations, 𝑎 drops from 2 to 0 in a linear fashion. 𝑟 is a
random number generated in (0, 1), and 𝑡max is the max number of
iterations.

Positions are updated during bubble-net attacks using Eq. (7). 𝑏 is
a constant that affects the shape of the spiral, and it is set to 1. 𝑙 is a
random number generated in (−1, 1).

𝑋 (𝑡 + 1) = 𝐷 (𝑡) ⋅ 𝑒𝑏𝑙 ⋅ cos(2𝜋𝑙) +𝑋 (𝑡) (7)
𝑖 𝑖 ∗
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𝑥

Fig. 2. Basic structure of the proposed RSCDWOA method in path planning for
multi-UAVs.

Notably, two types of whale hunting are conducted simultaneously,
i.e., each whale is in either the encircling or spiral phase. Consequently,
a random number 𝑞 is produced beforehand. We assume that there is
a 50% probability to select two models to update the position of the
whale during the optimization process [20]. If 𝑞 is less than or equal
to 0.5, the encircling mode is implemented. If not, the spiral mode is
utilized.

𝑋𝑖(𝑡 + 1) =

{

𝑋∗(𝑡) − 𝐴 ⋅𝐷𝑖(𝑡), 𝑞 < 0.5

𝐷𝑖(𝑡) ⋅ 𝑒𝑏𝑙 ⋅ cos(2𝜋𝑙) +𝑋∗(𝑡), 𝑞 ≥ 0.5
(8)

In the encircling mode, in addition to the location update mech-
anism described above, whales randomly hunt for the position of the
prey, as shown in Eqs. (9)–(10). 𝑋𝑟𝑎𝑛𝑑 (𝑡) represents a randomly selected
another whale from the population of whales at time 𝑡. The position
update then depends on 𝑋𝑟𝑎𝑛𝑑 (𝑡) rather than 𝑋∗(𝑡).

𝑋𝑖(𝑡 + 1) = 𝑋𝑟𝑎𝑛𝑑 (𝑡) − 𝐴 ⋅𝐷𝑖(𝑡) (9)

𝐷𝑖(𝑡) = |𝐶 ⋅𝑋𝑟𝑎𝑛𝑑 (𝑡) −𝑋𝑖(𝑡)| (10)

The two ways of updating position in the enveloping mode are not
chosen at random. When every value in 𝐴 is more than 1 or less than
−1, the random updating method is chosen and the population tends
to adopt random exploration. When 𝐴 is greater than −1 and less than
1, the optimal method for updating candidate solutions is selected.

In the WOA algorithm, a set of solutions are first initialized at
random, and the positions of each search agent are updated in each
iteration based on either the randomly selected search agent or the best
solution so far found. Then the parameter 𝑎 is reduced from 2 to 0 as
the number of iterations increases in order to achieve exploration and
exploitation. A random search agent is selected when |𝐴| > 1, and the
optimal option is picked when |𝐴| < 1 to update the position of the
search agent. The WOA can change between helical and circular motion
depending on the value of 𝑞. Finally, The process is ended when the
termination requirement is met.

3. An improved algorithm RSCDWOA

The original WOA converges slowly, and it is easily to fall into
local optimum. Therefore, this section proposes an improved algorithm
named the Reverse-search Chaos Differential-evolution WOA (RSCD-
WOA), which combines the chaos theory with differential evolution
to increase the unpredictability of the search agent’s position so that
every corner of the search space can be explored. It will be later shown
that the new trajectory found by RSCDWOA fully achieves the global
optimum and passes smoothly through the region of local optimum (see
Fig. 2).
3

3.1. The chaos theory

Chaos is a dynamic and deterministic system that is extremely
sensitive to its initial conditions and parameters. The nature of chaos
is random and unpredictable, while it also exhibits some regularity. It
has been demonstrated that the chaos theory can aid meta-heuristics
such as PSO in determining the ideal value of global coverage [37]. As
shown in the previous subsection, the values of coefficients A and C
are determined by a random vector 𝑟 ∈ [0, 1], while in RSCDWOA, 𝑟 is
substituted by a chaotic map 𝑤(𝑡).

𝐴 = 2 ⋅ 𝑎 ⋅𝑤(𝑡) − 𝑎 (11)

𝐶 = 2 ⋅𝑤(𝑡) (12)

𝑤(𝑡) is calculated by a sequence of chaotic map. Here, we will
evaluate and choose between two chaotic maps [38], Eqs. (13) and
(14), which correspond to logical maps and tent maps, respectively.

𝑤(𝑡 + 1) = 𝜇 ⋅𝑤(𝑡) ⋅ [1 −𝑤(𝑡)] , 𝑤(𝑡) ∈ (0, 1) (13)

𝑤(𝑡 + 1) =

⎧

⎪

⎨

⎪

⎩

𝑤(𝑡)
𝛽
, 𝑤(𝑡) < 𝛽

1 −𝑤(𝑡)
1 − 𝛽

, 𝑤(𝑡) ≥ 𝛽
(14)

The parameter 𝑙 has a significant impact on the spiral shape of the
whale search in WOA. In RSCDWOA, 𝑙 is also substituted by 𝑤(𝑡) [37],
which adds some randomness to the updating of each search agent 𝑖.

𝑋𝑖(𝑡 + 1) = 𝐷𝑖(𝑡) ⋅ 𝑒𝑏𝑤(𝑡) ⋅ cos [2𝜋𝑤(𝑡)] +𝑋∗(𝑡) (15)

Although the chaos theory is used to achieve more diverse parame-
ters and solutions, it is important to note that 𝑋∗ may not be updated
a specified number of times during the search process, which makes
𝑋∗ fall into local optimum. Therefore, this paper combines the reverse
search methods and the differential evolution algorithm to improve
search efficiency and avoid local optimum.

3.2. The reverse search method

In order to effectively increase the search efficiency of whale popu-
lations, the adoption of reverse search operation is explored. Refs. [39,
40] offer the concepts of secondary reverse point and secondary reflec-
tion reverse point, which substantially increase the efficiency of reverse
search methods. The basic property of reverse point is given below.

Property 1. Let 𝑥 ∈ [𝑎, 𝑏], where [𝑎, 𝑏] is a real number interval, then the
reverse point of 𝑥 is 𝑥̄ = 𝑎 + 𝑏 − 𝑥.

Property 2. Let 𝑥 ∈ [𝑎, 𝑏], where [𝑎, 𝑏] is a real number interval,
and 𝑥̄ is its reversal point, then the quadratic reversal point is defined as
̄𝑞 = 𝑟𝑑 (ℎ, 𝑥̄), where ℎ = (𝑎+𝑏)∕2 is the center position of the interval [𝑎, 𝑏],
and 𝑟𝑑 (ℎ, 𝑥̄) represents a random number that obeys the normal distribution
in the interval [ℎ, 𝑥̄].

Property 3. Let 𝑥 ∈ [𝑎, 𝑏], where [𝑎, 𝑏] is a real number interval, then the
second reflection reverse point of 𝑥 is defined as 𝑥̄𝑟 = (𝑥, ℎ).

A schematic diagram for reverse search is shown in Fig. 3. For an
individual 𝑋𝑖 = (𝑥𝑖1, 𝑥𝑖2,… , 𝑥𝑖𝑚) in a certain whale group, where 𝑥𝑖𝑘
ranges from [𝑙𝑖, 𝑢𝑖], the reverse point can be expressed as 𝑥̄𝑖𝑘 = 𝑙𝑖 + 𝑢𝑖 −
𝑥𝑖𝑘, then its quadratic reverse point is 𝑥̄𝑖𝑘(𝑞) = 𝑟𝑑 (ℎ, 𝑥̄𝑖𝑘), ℎ = (𝑙𝑖 + 𝑢𝑖)∕2,
and the reverse point of secondary reflection is 𝑥̄𝑖𝑘(𝑟) = 𝑟𝑑 (𝑥𝑖𝑘, ℎ).
Therefore, the reverse search operator is used to obtain its secondary
reflection reverse point:

𝑋̄𝑖(𝑟) =
[

𝑥̄𝑖1(𝑟), 𝑥̄𝑖2(𝑟),… , 𝑥̄𝑖𝑚(𝑟)
]

(16)

If the fitness function 𝑓 (𝑋̄𝑟(𝑟)) satisfies 𝑓 (𝑋̄𝑖(𝑟)) < 𝑓 (𝑋𝑖), then the
replacement operation is performed, which is 𝑋 = 𝑋̄ .
𝑖 𝑖
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Fig. 3. A schematic diagram for reverse search.

Fig. 4. The ring topology of k-neighborhood [42].

.3. The differential evolution method

I. Mutation
The Differential evolution (DE) method utilizes both global and

ocal search strategies [41,42]. Therefore, the final position pf each
earch agent is determined by the local and global search results. The
utant portion of DE is denoted by Eqs. (18)–(20). For any search agent

, its neighbors fall inside the interval [𝑖−𝑘, 𝑖+𝑘], where 𝑘 is a nonzero
integer in the range [1, (𝑛 − 1)∕2]. If 𝑘 equals to 1, the neighborhood
shown in Fig. 4 consists of vectors 𝑋𝑖−1(𝑡), 𝑋𝑖(𝑡), 𝑋𝑖+1(𝑡).

𝑋𝑖,𝑏𝑒𝑠𝑡_𝑙 is the place with the highest fitness value in close proximity
to the search agent 𝑖. Two matrices, 𝛾1 and 𝛾2, are employed to increase
the randomness of the search procedure, and they are both calculated
as:

𝛾 = 𝜆 × 𝑟𝑎𝑛𝑑(𝛬,𝜓) (17)

where 𝜆 is a constant that has been set to 0.0001 in this paper. 𝛬 repre-
sents the population size, and 𝜓 is the dimension of each search agent.
The local donor vector for each search agent 𝑖 at time 𝑡, represented by
𝐿𝑖(𝑡), is calculated as follows:

𝐿𝑖(𝑡) = 𝑋𝑖(𝑡) + 𝛾1 ⋅
(

𝑋𝑖,𝑏𝑒𝑠𝑡_𝑙 −𝑋𝑖(𝑡)
)

+ 𝛾2 ⋅
(

𝑋𝑝1(𝑡) −𝑋𝑝2(𝑡)
)

(18)

where 𝑝1 and 𝑝2 are two random values chosen from [𝑖−𝑘, 𝑖+𝑘]. 𝑋𝑖,𝑏𝑒𝑠𝑡_𝑔
is the best solution for the current global whale population, so the
global donor vector for each search agent 𝑖 at time 𝑡, denoted by 𝐺𝑖(𝑡),
is computed as:

𝐺𝑖(𝑡) = 𝑋𝑖,𝑏𝑒𝑠𝑡_𝑔 +  ⋅
(

𝑋𝑖,𝑏𝑒𝑠𝑡_𝑔 −𝑋𝑖(𝑡)
)

+  ⋅
(

𝑋𝑟1(𝑡) −𝑋𝑟2(𝑡)
) (19)

where 𝑟1 and 𝑟2 are two random numbers chosen in the current whale
population.  is a predefined scale factor. Combining 𝐿𝑖(𝑡) and 𝐺𝑖(𝑡)
with Eq. (20) we have the final donor vector 𝑉𝑖(𝑡):

𝑉𝑖(𝑡) = 𝜔 ⋅ 𝐺𝑖(𝑡) + (1 − 𝜔) ⋅ 𝐿𝑖(𝑡) (20)

where 𝜔 ∈ (0, 1) is a predefined coefficient.
II. Crossover

In the crossover section, the diversity of the whale population is
further improved after the donor vector is computed in the mutation
section. 𝑈𝑖,𝑗 (𝑡) denotes the value of dimension 𝑗 for each search agent
𝑖 at time 𝑡, which is updated according to the following rules:

𝑈𝑖,𝑗 (𝑡) =

{

𝑉𝑖,𝑗 (𝑡), 𝑟𝑎𝑛𝑑(𝛬,𝜓) ≥ 𝐶𝑟𝑎𝑡𝑒 or 𝜒 = 𝑗
(21)
4

𝑋𝑖,𝑗 (𝑡), otherwise
where 𝐶𝑟𝑎𝑡𝑒 represents the crossover rate. Specifically, if a random
number is greater than 𝐶𝑟𝑎𝑡𝑒, 𝑈𝑖,𝑗 (𝑡) is updated by 𝑉𝑖,𝑗 (𝑡). In addition, if a
random dimension 𝜒 is equal to 𝑗, 𝑈𝑖,𝑗 (𝑡) is also updated by 𝑉𝑖,𝑗 (𝑡). This
is to avoid situations where the initial value of 𝐶𝑟𝑎𝑡𝑒 is too small, which
would invalidate the cross component. In other cases, it is updated by
𝑋𝑖,𝑗 (𝑡).

After the crossover operator of the differential evolution process in
RSCDWOA, a perturbation vector 𝑋𝑖,𝑗 (𝑡) corresponding to each trial
vector 𝑈𝑖,𝑗 (𝑡) is added and the occurrence probability of each per-
turbation vector is denoted by 𝛼, which is a control parameter. The
newly generated vector is denoted as 𝑊𝑖,𝑗 (𝑡) and 𝜑 is a random number
between 0 and 1.

𝑊𝑖,𝑗 (𝑡) =

{

𝑋𝑖,𝑗 (𝑡), 𝜑 ≤ 𝛼

𝑈𝑖,𝑗 (𝑡), otherwise
(22)

II. Selection
During the selection process, the position with better fitness value

s chosen as 𝑋𝑖(𝑡 + 1) of each search agent 𝑖.

𝑖(𝑡 + 1) =

{

𝑊𝑖(𝑡), 𝑓
(

𝑊𝑖(𝑡)
)

≤ 𝑓
(

𝑋𝑖(𝑡)
)

𝑋𝑖(𝑡), 𝑓
(

𝑋𝑖(𝑡)
)

< 𝑓
(

𝑊𝑖(𝑡)
) (23)

Algorithm 1 presents the overall process for RSCDWOA. A flow
hart in Fig. 5 shows the complete implementation process of the
roposed algorithm.
Algorithm 1 RSCDWOA
1: Initialize the population of whales 𝑋𝑖(𝑖 = 1, 2,⋯ , 𝑛)
2: Initialize 𝐶𝑟𝑎𝑡𝑒,  , lifespan 𝑆
3: 𝑠 ← 0
4: step3.1: chaos theory
5: Calculate 𝑤(𝑡 + 1) with Eq. (13) or (14)
6: Calculate the fitness of each search agent
7: while 𝑡 ≤ 𝑡 do
8: for each search agent do
9: Update 𝑎, 𝐴, 𝐶, 𝑙 and 𝑞
0: if 𝑞 ≤ 0.5 then

11: if |𝐴| < 1&𝑠 < 𝑆 then
12: Update position of current search agent with Eq. (3)
13: else if |𝐴| ≥ 1&𝑠 < 𝑆 then
14: Select a random search agent 𝑋𝑟𝑎𝑛𝑑
15: Update position of current search agent with Eq. (8)
16: else
17: step3.3: differential evolution
18: Mutation
19: Generate the final donor vector with Eq. (20)
20: Crossover
21: Generate 𝑈𝑖(𝑡) and 𝑊𝑖(𝑡) with Eq. (21) and (22)
22: Selection(step3.2: reverse search)
23: Update position of each search agent with Eq. (23) and

(16)
24: end if
25: else if 𝑞 ≥ 0.5 then
26: Update position of each search agent with Eq. (7)
27: end if
28: Check if any search agent goes beyond the search space and

amend it
29: Calculate the fitness value of each search agent
30: Update 𝑋∗ if there is a better solution
31: end for
32: + + 𝑠 if there is no better solution
33: + + 𝑡
34: end while
35: return
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Fig. 5. The whole process of RSCDWOA.

. Analysis of convergence

The continuous solution space of infinite states can be discretized to
acilitate the theoretical analysis of the algorithm [43]. Now we define
he state of individual 𝑖 in at time 𝑡 as 𝑋𝑖(𝑡) = 𝑋𝑡

𝑖 , 𝑋
𝑡
𝑖 ∈ 𝐷, where 𝐷 is

he state space, then the sequence {𝑋𝑡
𝑖 , 𝑡 ≥ 1} formed by state 𝑋𝑡

𝑖 is a
andom sequence with discrete values in the discrete space.

It is known that the current state of an individual is only related
o the previous state and is independent of 𝑡. Besides, the number of
opulations and the number of states are finite in the discrete space,
he sequence {𝑋𝑡

𝑖 , 𝑡 ≥ 1} is a finite homogeneous Markov chain. As
he value of the optimal function is recorded at each iteration, it is
lso an absorbing Markov process. Let 𝑔𝑡 be the locally optimal state of
ndividual 𝑖 at time 𝑡, 𝐵∗ be the set of globally optimal solutions, and

be the set of locally optimal solutions. Then 𝛺 is a subset of the state
pace 𝐷 and every vector in 𝛺 is equal yet not globally optimal.

efinition 1 (Convergence in Probability [44]). The sequence {𝑋𝑡
𝑖 , 𝑡 ≥ 1}

onverges to the global optimum according to probability when and
nly when:

lim
→∞

𝑝
{

𝑋𝑡
𝑖 ∩ 𝐵

∗ ≠ 𝜙
}

= 1 (24)

A random sequence {𝑋𝑡
𝑖 , 𝑡 ≥ 1} converges probabilistically, that is,

he probability that the best individual sequence of the overall sequence
𝑋𝑡
𝑖 , 𝑡 ≥ 1} will converge to the global optimum as the iteration time

increases infinitely is close to 1. Non-convergence probabilistically
eans that the limit of the probability of convergence is less than 1,

ut this does not mean that the algorithm cannot converge to the global
5

ptimum. In fact, algorithms that do not converge probabilistically may
𝑡

ave high convergence. However, probabilistically convergent algo-
ithms are usually more robust than probabilistically non-convergent
lgorithms.

Due to the finite accuracy of numerical computation in computers,
e can map the continuous state space 𝐷 to a finite discrete set 𝑑. The

tate space of the stochastic process is defined as the overall space of the
lgorithm, and if the overall scale is 𝑚, the state space of the random
equence {𝑋𝑡

𝑖 , 𝑡 ≥ 1} is

𝑚 =

𝑚
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑑 × 𝑑 ×⋯ × 𝑑 (25)

Let 𝑋, 𝑌 ,𝑍,𝑈, 𝑉 be the states of 𝐷𝑚, 𝑝{𝑋𝑡+1
𝑖 = 𝑌 |𝑋𝑡

𝑖 = 𝑋},
ndicating that at time 𝑡 the state is 𝑋, at the next time the state changes
o 𝑌 , and so on.

Let 𝑎0, 𝑏0, 𝑐0 be the operators of the mutation, crossover and se-
ection process in RSCDWOA. 𝑝{𝑎0(𝑋) = 𝑌 } is the probability that

mutates to 𝑌 at time 𝑡, and similarly to obtain 𝑝{𝑏0(𝑋, 𝑌 ) = 𝑍},
{𝑐0(𝑋,𝑍) = 𝑉 }. Hence,
{

𝑋𝑡+1
𝑖 = 𝑉 |𝑋𝑡

𝑖 = 𝑋
}

=
∑

𝑌 ,𝑍∈𝐷𝑚
𝑝
{

𝑎0(𝑋) = 𝑌
}

⋅𝑝
{

𝑏0(𝑋, 𝑌 ) = 𝑍
}

⋅ 𝑝
{

𝑐0(𝑋,𝑍) = 𝑉
}

(26)

here 𝑋, 𝑌 ,𝑍, 𝑉 ∈ 𝐷𝑚.

efinition 2. The sequence {𝑋𝑡
𝑖 , 𝑡 ≥ 1} is the overall sequence of the

lgorithm. If for some integer 𝑘 ≥ 0, 𝑝{𝑋𝑡+𝑘 = 𝑌 |𝑋𝑡 = 𝑋} > 0 indicates
hat state 𝑋 is reachable to state 𝑌 . If state 𝑌 is also reachable to state
, 𝑋, 𝑌 is said to be reachable to each other.

emma 1. ∃𝑋𝑡𝑘 ∈ 𝛺 at time 𝑡𝑘, then

lim
→∞

𝑝
{

𝑋𝑡
𝑖 = 𝑋𝑡𝑘

𝑖 |𝑋𝑡𝑘
𝑖 ∈ 𝛺

}

= 1 (27)

here 𝛺 = {𝑋 = (

𝑚
⏞⏞⏞⏞⏞⏞⏞
𝑏⃗, 𝑏⃗,… , 𝑏⃗), 𝑏⃗ ∈ 𝐷𝑚 and 𝑏⃗ ∈ 𝐵∗}

roof. When the state 𝑋𝑡𝑘 ∈ 𝛺 at time 𝑡𝑘, all vectors of the overall 𝑋𝑡𝑘

re equal, so that the difference between any two vectors is 0. By the
quations for the differential evolution process, we can obtain
{

𝑎0(𝑋
𝑡𝑘
𝑖 ) = 𝑋𝑡𝑘

𝑖

}

= 1, ∀𝑋𝑡𝑘
𝑖 ∈ 𝛺

{

𝑏0(𝑋
𝑡𝑘
𝑖 , 𝑋

𝑡𝑘
𝑖 ) = 𝑋𝑡𝑘

𝑖

}

= 1, ∀𝑋𝑡𝑘
𝑖 ∈ 𝛺

{

𝑐0(𝑋
𝑡𝑘
𝑖 , 𝑋

𝑡𝑘
𝑖 ) = 𝑋𝑡𝑘

𝑖

}

= 1, ∀𝑋𝑡𝑘
𝑖 ∈ 𝛺

(28)

hus according to formula (26), we can get
{

𝑋𝑡+1
𝑖 = 𝑋|𝑋𝑡

𝑖 = 𝑋 ∈ 𝛺
}

=
∑

𝑌 ,𝑍∈𝐷𝑚
𝑝
{

𝑎0(𝑋) = 𝑌
}

⋅ 𝑝
{

𝑏0(𝑋, 𝑌 ) = 𝑍
}

⋅ 𝑝
{

𝑐0(𝑋,𝑍) = 𝑋
}

= 𝑝
{

𝑎0(𝑋) = 𝑋
}

⋅ 𝑝
{

𝑏0(𝑋,𝑋) = 𝑋
}

⋅ 𝑝
{

𝑐0(𝑋,𝑋) = 𝑋
}

= 1

(29)

here 𝑋 ∈ 𝛺 and 𝑌 ,𝑍 ∈ 𝐷𝑚

Therefore, for a given positive integer 𝑡𝑘, if the overall 𝑋𝑡𝑘
𝑖 ∈ 𝛺,

hen

lim
→∞

𝑝
{

𝑋𝑡
𝑖 = 𝑋𝑡𝑘

𝑖 |𝑋𝑡𝑘
𝑖 ∈ 𝛺

}

= 1 (30)

heorem 1. If it contains only the bubble-net attack mechanism, RSCD-
OA cannot converge in probability. That is

lim 𝑝
{

𝑋𝑡 ∩ 𝐵∗ ≠ 𝜙
}

< 1 (31)

→∞ 𝑖
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Proof. Let 𝑋0 be a random vector of initial individuals uniformly
distributed on 𝐷. Each individual in 𝑋0 is generated with equal prob-
ability. Clearly 𝑝{𝑋0 ∈ 𝛺} > 0.

According to the bubble-net attack mechanism iterative formula, we
get

𝑋𝑡+1
𝑖 = 𝑔𝑡 + |

|

𝑔𝑡 −𝑋𝑡
𝑖
|

|

⋅ 𝑒𝑏𝑤(𝑡) ⋅ cos[2𝜋𝑤(𝑡)] (32)

Thus its one-step transfer probability is:

𝑝
{

𝑋𝑡+1
𝑖 = 𝑔𝑡+1|𝑋𝑡

𝑖 = 𝑔𝑡
}

= 𝑝
{

𝑋𝑡+1
𝑖 = 𝑔𝑡 + |

|

𝑔𝑡 −𝑋𝑡
𝑖
|

|

⋅ 𝑒𝑏𝑤(𝑡) ⋅ cos[2𝜋𝑤(𝑡)] |
|

𝑋𝑡
𝑖 = 𝑔𝑡

}

= 𝑝
{

𝑋𝑡+1
𝑖 = 𝑔𝑡|𝑋𝑡

𝑖 = 𝑔𝑡
}

=

{

1, 𝑔𝑡 = 𝑔𝑡+1

0, 𝑔𝑡 ≠ 𝑔𝑡+1

(33)

From Lemma 1, when 𝑋0 ∈ 𝛺, we get:

lim
𝑡→∞

𝑝
{

𝑋𝑡
𝑖 = 𝑋0

|𝑋0 ∈ 𝛺
}

= 1 (34)

Then,

lim
𝑡→∞

𝑝
{

𝑋𝑡
𝑖 = 𝑔𝑡|𝑔𝑡 ∈ 𝛺

}

= 1 (35)

mplying that,

lim
→∞

𝑝
{

𝑋𝑡
𝑖 ∩ 𝐵

∗ = 𝜙|𝑔𝑡 ∈ 𝛺
}

= 1 (36)

ence, we can get:

lim
𝑡→∞

𝑝
{

𝑋𝑡
𝑖 ∩ 𝐵

∗ ≠ 𝜙
}

= 1 − lim
𝑡→∞

𝑝
{

𝑋𝑡
𝑖 ∩ 𝐵

∗ = 𝜙
}

≤ 1 − lim
𝑡→∞

𝑝
{

𝑋𝑡
𝑖 ∩ 𝐵

∗ = 𝜙,𝑋0 ∈ 𝛺
}

≤ 1 − lim
𝑡→∞

𝑝
{

𝑋𝑡
𝑖 ∩ 𝐵

∗ = 𝜙|𝑋0 ∈ 𝛺
}

⋅ 𝑝
{

𝑋0 ∈ 𝛺
}

= 1 − 𝑝
{

𝑋0 ∈ 𝛺
}

< 1

(37)

herefore,

lim
→∞

𝑝
{

𝑋𝑡
𝑖 ∩ 𝐵

∗ ≠ 𝜙
}

< 1 (38)

{

𝑋𝑡+1
𝑖 = 𝑔𝑡+1|𝑋𝑡

𝑖 = 𝑔𝑡
}

= 1 (39)

According to Definition 1, the sequence {𝑋𝑡
𝑖 , 𝑡 ≥ 1} does not

onverge in probability, so Theorem 1 stands.

heorem 2. If it contains only the encircling victim mechanism, RSCD-
OA can converge in probability, which is

lim
→∞

𝑝
{

𝑋𝑡
𝑖 ∩ 𝐵

∗ ≠ 𝜙
}

= 1 (40)

roof. According to the encircling victim mechanism iterative formula,
e get
𝑡+1
𝑖 = 𝑔𝑡 − 𝐴 ⋅ |

|

𝐶 ⋅ 𝑔𝑡 −𝑋𝑡
𝑖
|

|

(41)

hus its one-step transfer probability is
{

𝑋𝑡+1
𝑖 = 𝑔𝑡+1|𝑋𝑡

𝑖 = 𝑔𝑡
}

= 𝑝
{

𝑋𝑡+1
𝑖 = 𝑔𝑡 − 𝐴 ⋅ |𝐶 ⋅ 𝑔𝑡 −𝑋𝑡

𝑖 | |𝑋
𝑡
𝑖 = 𝑔𝑡

}

= 𝑝
{

𝑋𝑡+1
𝑖 = 𝑔𝑡|𝑋𝑡

𝑖 = 𝑔𝑡
}

=

{

1, 𝑔𝑡 = 𝑔𝑡+1, 𝐴 = 0 or 𝐶 = 1

0, 𝑔𝑡 ≠ 𝑔𝑡+1, 𝐴 ≠ 0 and 𝐶 ≠ 1

(42)

ssuming 𝐴 = 0 or 𝐶 = 1

𝐴 = 2𝑎𝑤(𝑡) − 𝑎 = 0
(43)
6

𝐶 = 2𝑤(𝑡) = 1
e have

(𝑡) = 1
2

(44)

Depending on the kind of chaotic mapping chosen, we divide the
discussion into two cases, the former being logical map and the latter
being tent map.

(1) when 𝑤(𝑡 + 1) = 𝜇 ⋅𝑤(𝑡) ⋅ [1 −𝑤(𝑡)]
In this case,

(𝑡 + 1) = 1
4
𝜇 (45)

if and only if 𝜇 = 2

(𝑡 + 1) = 1
2
= 𝑤(𝑡) (46)

Therefore, 𝑝{𝑋𝑡+1
𝑖 = 𝑔𝑡+1|𝑋𝑡

𝑖 = 𝑔𝑡} = 1, trapped in local optimum.

(2) when 𝑤(𝑡 + 1) =

⎧

⎪

⎨

⎪

⎩

𝑤(𝑡)
𝛽
, 𝑤(𝑡) < 𝛽

1 −𝑤(𝑡)
1 − 𝛽

, 𝑤(𝑡) ≥ 𝛽
where 0 < 𝛽 < 1, substitute 𝑤(𝑡) = 1∕2 to obtain:

𝑤(𝑡 + 1) =

⎧

⎪

⎨

⎪

⎩

1∕2
𝛽
, 1

2
< 𝛽

1∕2
1 − 𝛽

, 1
2
≥ 𝛽

(47)

Only when 𝛽 = 0 or 𝛽 = 1, we have:

𝑤(𝑡 + 1) = 1
2
= 𝑤(𝑡) (48)

and because 0 < 𝛽 < 1, so

(𝑡 + 1) ≠ 1
2

(49)

In summary, when selecting the tent map, we get 𝐴 ≠ 0 and 𝐶 ≠ 1,
thus

𝑝
{

𝑋𝑡+1
𝑖 = 𝑔𝑡+1|𝑋𝑡

𝑖 = 𝑔𝑡
}

= 0 (50)

his means that if it only contains the encircling victim mechanism,
SCDWOA does not fall into the local optimum. Suppose the individual
is still not in the global optimal solution set 𝐵∗ at time 𝑡, we have:
{

𝑋𝑡
𝑖 ∩ 𝐵

∗ = 𝜙
}

= 𝑝
{

𝑋𝑡
𝑖 ∩ 𝐵

∗ = 𝜙|𝑋𝑡−1
𝑖 ∩ 𝐵∗ ≠ 𝜙

}

⋅ 𝑝
{

𝑋𝑡−1
𝑖 ∩ 𝐵∗ ≠ 𝜙

}

+ 𝑝
{

𝑋𝑡
𝑖 ∩ 𝐵

∗ = 𝜙|𝑋𝑡−1
𝑖 ∩ 𝐵∗ = 𝜙

}

⋅ 𝑝
{

𝑋𝑡−1
𝑖 ∩ 𝐵∗ = 𝜙

}

(51)

Since the algorithm is a Markov process in the absorbing state, thus

𝑝
{

𝑋𝑡
𝑖 ∩ 𝐵

∗ = 𝜙|𝑋𝑡−1
𝑖 ∩ 𝐵∗ ≠ 𝜙

}

= 0 (52)

implying that Eq. (51) gives

𝑝
{

𝑋𝑡
𝑖 ∩ 𝐵

∗ = 𝜙
}

= 𝑝
{

𝑋𝑡
𝑖 ∩ 𝐵

∗ = 𝜙|𝑋𝑡−1
𝑖 ∩ 𝐵∗ = 𝜙

}

⋅ 𝑝
{

𝑋𝑡−1
𝑖 ∩ 𝐵∗ = 𝜙

} (53)

According to Eq. (50), individual 𝑖 will therefore enter the global
optimal solution set with some probability, and thus

{ 𝑡 ∗ 𝑡−1 ∗ }
0 < 𝑝 𝑋𝑖 ∩ 𝐵 ≠ 𝜙|𝑋𝑖 ∩ 𝐵 = 𝜙 < 1 (54)
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Eq. (53) gives

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝑝
{

𝑋𝑡
𝑖 ∩ 𝐵

∗ = 𝜙
}

=
[

1 − 𝑝
{

𝑋𝑡
𝑖 ∩ 𝐵

∗ ≠ 𝜙|𝑋𝑡−1
𝑖 ∩ 𝐵∗ = 𝜙

}]

⋅ 𝑝
{

𝑋𝑡−1
𝑖 ∩ 𝐵∗ = 𝜙

}

𝑝
{

𝑋𝑡−1
𝑖 ∩ 𝐵∗ = 𝜙

}

=
[

1 − 𝑝
{

𝑋𝑡−1
𝑖 ∩ 𝐵∗ ≠ 𝜙|𝑋𝑡−2

𝑖 ∩ 𝐵∗ = 𝜙
}]

⋅ 𝑝
{

𝑋𝑡−2
𝑖 ∩ 𝐵∗ = 𝜙

}

𝑝
{

𝑋𝑡−2
𝑖 ∩ 𝐵∗ = 𝜙

}

=
[

1 − 𝑝
{

𝑋𝑡−2
𝑖 ∩ 𝐵∗ ≠ 𝜙|𝑋𝑡−3

𝑖 ∩ 𝐵∗ = 𝜙
}]

⋅ 𝑝
{

𝑋𝑡−3
𝑖 ∩ 𝐵∗ = 𝜙

}

⋯

𝑝
{

𝑋1
𝑖 ∩ 𝐵

∗ = 𝜙
}

=
[

1 − 𝑝
{

𝑋1
𝑖 ∩ 𝐵

∗ ≠ 𝜙|𝑋0
𝑖 ∩ 𝐵

∗ = 𝜙
}]

⋅ 𝑝
{

𝑋0
𝑖 ∩ 𝐵

∗ = 𝜙
}

(55)

ummarized as
{

𝑋𝑡
𝑖 ∩ 𝐵

∗ = 𝜙
}

=
𝑡

∏

𝑘=1

[

1 − 𝑝
{

𝑋𝑘
𝑖 ∩ 𝐵∗ ≠ 𝜙|𝑋𝑘−1

𝑖 ∩ 𝐵∗ = 𝜙
}]

⋅ 𝑝
{

𝑋0
𝑖 ∩ 𝐵

∗ = 𝜙
}

(56)

According to Eq. (54),

lim
→∞

𝑡
∏

𝑘=1

[

1 − 𝑝
{

𝑋𝑘
𝑖 ∩ 𝐵∗ ≠ 𝜙|𝑋𝑘−1

𝑖 ∩ 𝐵∗ = 𝜙
}]

= 0 (57)

ence,

lim
→∞

𝑝
{

𝑋𝑡
𝑖 ∩ 𝐵

∗ = 𝜙
}

= 0 (58)

hich is equivalent to:

lim
→∞

𝑝
{

𝑋𝑡
𝑖 ∩ 𝐵

∗ ≠ 𝜙
}

= 1 (59)

ccording to Definition 1, Theorem 2 holds.

Now we have

𝑡
𝑖,𝑗 =

{

𝑋𝑡
𝑖,𝑗 , 𝜑 ≤ 𝛼

𝑈 𝑡
𝑖,𝑗 , otherwise

(60)

After the crossover operator of the differential evolution process in
SCDWOA, a perturbation vector𝑋𝑡

𝑖,𝑗 corresponding to each trial vector
𝑡
𝑖,𝑗 is added and the probability of occurrence of each perturbation
ector is denoted by 𝛼, where 𝛼 is a control parameter. The perturbation
ector 𝑋𝑡

𝑖,𝑗 contains 𝑗 sequences {𝑋𝑡
𝑖 , 𝑡 ≥ 1}, for all 𝑗 = 1, 2,… , 𝑛. The

ewly generated vector is denoted as 𝑊 𝑡
𝑖,𝑗 , the process is denoted as 𝑴

nd its operator is denoted as 𝑚0. Thus, 𝜑 is a random number between
and 1. Due to the addition of the perturbation vector, the next process

election equation is updated as follows

𝑡+1
𝑖 =

{

𝑊 𝑡
𝑖 , 𝑓 (𝑊 𝑡

𝑖 ) ≤ 𝑓 (𝑋𝑡
𝑖 )

𝑋𝑡
𝑖 , 𝑓 (𝑋𝑡

𝑖 ) < 𝑓 (𝑊
𝑡
𝑖 )

(61)

The process after the selection update is denoted as 𝑵 and its
perator is denoted as 𝑛0. 𝑓 (𝑋) denotes the minimum function value
fitness value) of the state (population) 𝑋.

emma 2. After carrying out the 𝑴 process, all states (populations) of
ts state space 𝐷𝑚 are reachable to each other. For all states 𝑋, 𝑌 ∈ 𝐷, the
robability of a one-step transfer from 𝑋 to 𝑌 is greater than 0, thus
{

𝑚0 ⋅ 𝑏0 ⋅ 𝑎0(𝑋) = 𝑌
}

> 0 (62)

roof. After the 𝑴 process has been performed, three operators are
7

sed, namely the mutation operator 𝑎0, the crossover operator 𝑏0 and i
he 𝑴 process operator 𝑚0. Assuming that the 𝑵 process has not yet
een performed in 𝐷𝑚, for ∀𝑋, 𝑌 ,𝑍 ∈ 𝐷𝑚, based on Eq. (60) we get
{

𝑚0 ⋅ 𝑏0 ⋅ 𝑎0(𝑋) = 𝑌
}

= (1 − 𝛼) ⋅ 𝑝
{

𝑏0 ⋅ 𝑎0(𝑋) = 𝑌
}

+ 𝛼 ⋅
∑

𝑍∈𝐷𝑚
𝑝
{

𝑏0 ⋅ 𝑎0(𝑋) = 𝑍
}

⋅ 𝑝
{

𝑚0(𝑍) = 𝑌
}

(63)

here 𝑋, 𝑌 ,𝑍 ∈ 𝐷𝑚, and from Eq. (60), we can get
{

𝑚0(𝑍) = 𝑌
}

> 0 for all 𝑍. (64)

hen

⋅
∑

𝑍∈𝐷𝑚
𝑝
{

𝑏0 ⋅ 𝑎0(𝑋) = 𝑍
}

⋅ 𝑝
{

𝑚0(𝑍) = 𝑌
}

> 0 (65)

herefore, we can get
{

𝑚0 ⋅ 𝑏0 ⋅ 𝑎0(𝑋) = 𝑌
}

> 0 (66)

Employing the 𝑴 process, the probability of a one-step transfer
rom any state 𝑋 to any state 𝑌 is greater than 0. Thus, all states in
𝑚 are reachable to each other at this time. Next, properties of the 𝑵
rocess operator will be proved.

emma 3. Given states (populations) 𝑋, 𝑌 ,𝑍 ∈ 𝐷𝑚, where 𝑍 ⊂ 𝑋 ∪ 𝑌 ,
he 𝑵 process has the following two properties:

(i) if 𝑓 (𝑍) ≠ min{𝑓 (𝑋), 𝑓 (𝑌 )}, 𝑋, 𝑌 cannot generate 𝑍 by the 𝑵
rocess, thus 𝑝{𝑛0(𝑋, 𝑌 ) = 𝑍} = 0.

(ii) if 𝑓 (𝑍) = min{𝑓 (𝑋), 𝑓 (𝑌 )}, 𝑋, 𝑌 can generate 𝑍 by the 𝑵 process,
hus 𝑝{𝑛0(𝑋, 𝑌 ) = 𝑍} > 0.

roof. From Eq. (61), this obviously holds.

emark 1. It follows from the 𝑴 process that the generated mutation
ector 𝑊 𝑡

𝑖,𝑗 is equal to either the perturbation vector 𝑋𝑡
𝑖,𝑗 with proba-

ility 𝛼 or the trial vector 𝑈 𝑡
𝑖,𝑗 with probability 1 − 𝛼. When 𝛼 is 0, 𝑊 𝑡

𝑖,𝑗
s equal to 𝑈 𝑡

𝑖,𝑗 , implying that the 𝑴 process has not occurred; when 𝛼
akes a smaller number between 0 and 1, 𝑈 𝑡

𝑖,𝑗 will be replaced by the
erturbation vector with a smaller probability, and since the algorithm
ontains only bubble-net attack and encircling the victim mechanism is
hosen with equal probability, this ensures that even if a body is caught
n a local optimum in the bubble-net attack mechanism, it can quickly
ump out of the local optimum in the encircling the victim mechanism
y the increased perturbation vector. At the same time, the probability
hat 𝑊 𝑡

𝑖,𝑗 equals 𝑈 𝑡
𝑖,𝑗 is large, which allows the algorithm to maintain

ts original search capability. Therefore 𝛼 is usually set to a smaller
umber between 0 and 1.

emark 2. It is clear from the 𝑵 process that, similar to the selection
rocess before the update, the best individual (fitness value) is selected
o the next iteration.

emark 3. The convergence framework with respect to differential
volution can be represented by the elite retention strategy of the ge-
etic algorithm [45,46], and since the global convergence of RSCDWOA
epends on the differential evolution stage. Similar to mathematical
nduction, the proof of the global optimality of the algorithm in terms
f probability is therefore required to show that the probability of
t producing any individual for each generation of the population is
reater than 0. This means that for any function and initialization,
he probability of obtaining the optimum at each generation during
volution is always greater than 0. Furthermore, it is shown that the
lgorithm maintains the optimum solution for the next generation.

heorem 3. After adding the perturbation vector, RSCDWOA containing
he bubble-net attack and the encircling the victim mechanism converges
lobally in probability, that is, the sequence {𝑋𝑡

𝑖 , 𝑡 ≥ 1} converges globally

n probability.
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𝑝

t
i
m
f

Proof. ∀𝑋, 𝑌 ,𝑍 ∈ 𝐷𝑚, then the probability of transfer
{

𝑋𝑡+1
𝑖 = 𝑍|𝑋𝑡

𝑖 = 𝑋
}

= 𝑝
{

𝑛0 ⋅ 𝑚0 ⋅ 𝑏0 ⋅ 𝑎0(𝑋) = 𝑍
}

=
∑

𝑌∈𝐷𝑚
𝑝
{

𝑚0 ⋅ 𝑏0 ⋅ 𝑎0(𝑋) = 𝑌
}

⋅ 𝑝
{

𝑛0(𝑋, 𝑌 ) = 𝑍
}

(67)

Let 𝐵1 be a set consisting of populations in which at least one
individual is optimal, That is 𝐵1 ∈ 𝐷𝑚:

𝐵1 =
{

𝑋 =
(

𝑥⃗1, 𝑥⃗2,… , 𝑥⃗𝑚
)

∈ 𝐷𝑚
|𝑥⃗𝑖 ∈ 𝐵∗} ,

∃𝑖 ∈ (1, 2,… , 𝑚)
(68)

For the sake of completeness of the proof, the transfer probabilities
will then be illustrated in two cases.

(1) 𝑋 ∈ 𝐵1, 𝑍 ∈ 𝐵1
In this case,

𝑓 (𝑍) = min {𝑓 (𝑋), 𝑓 (𝑌 )} (69)

From Lemma 3, we can get

𝑝
{

𝑛0(𝑋, 𝑌 ) = 𝑍
}

> 0 (70)

According to Lemma 2, we have

𝑝
{

𝑚0 ⋅ 𝑏0 ⋅ 𝑎0(𝑋) = 𝑌
}

> 0, for all 𝑋, 𝑌 ∈ 𝐷𝑚 (71)

Thus, based on Eq. (67)

𝑝
{

𝑋𝑡+1
𝑖 = 𝑍|𝑋𝑡

𝑖 = 𝑋
}

> 0 (72)

Similarly, we can obtain

𝑝
{

𝑋𝑡+1
𝑖 = 𝑋|𝑋𝑡

𝑖 = 𝑍
}

> 0 (73)

Therefore, the states 𝑋,𝑍 are reachable to each other.
(2) 𝑋 ∈ 𝐵1, 𝑍 ∉ 𝐵1
In this case,

𝑓 (𝑍) ≠ min {𝑓 (𝑋), 𝑓 (𝑌 )} (74)

From Lemma 3, we can get

𝑝
{

𝑛0(𝑋, 𝑌 ) = 𝑍
}

= 0 (75)

based on Eq. (67), we can get

𝑝
{

𝑋𝑡+1
𝑖 = 𝑍|𝑋𝑡

𝑖 = 𝑋
}

= 0 (76)

Therefore, state 𝑋 to state 𝑍 is not reachable. Similarly, when 𝑋 ∉
𝐵1, 𝑍 ∈ 𝐵1, state 𝑍 to state 𝑋 is not reachable. From the Eqs. (72) (73)
(76), all elements in 𝐵1 are reachable to each other. Thus, it follows
that 𝐵1 is a positive, irreducible, acyclic and closed set. 𝐵1 ⊂ 𝐷𝑚, 𝐵1
is the set of point cuts. 𝐷∖𝐵1 is the set of cuts from 𝐷𝑚 to 𝐵1 and is
an acyclic set of states. By the acyclic Markov chain property [47], it
follows that for the sequence {𝑋𝑡

𝑖 , 𝑡 ≥ 1}, from the steady process we
have

lim
𝑡→∞

𝑝
{

𝑋𝑡
𝑖 = 𝑌

}

= 𝜋(𝑌 ), 𝑌 ∈ 𝐵1 (77)

Thus

lim
𝑡→∞

𝑝
{

𝑋𝑡
𝑖 ∈ 𝐵1

}

= 1 (78)

Finally, we can get

lim
𝑡→∞

𝑝
{

𝑋𝑡
𝑖 ∩ 𝐵

∗ ≠ 𝜙
}

= 1 (79)

Theorem 3 stands.

5. Simulation results

5.1. Basic setting

In order to verify the effectiveness and superiority of RSCDWOA, we
have incorporated it in our simulations with the classical artificial po-
8

tential field (APF) algorithm. The problem considered in the simulation
Fig. 6. The combination of proposed RSCDWOA and UAV trajectory planning.

Table 1
Information of UAVs.

UAV No. Start position/km Target position/km

1 [20,10,5] [90,90,0]
2 [10,20,5] [90,90,0]
3 [15,20,5] [90,90,0]
4 [20,20,5] [90,90,0]

experiment is multi-UAVs reaching a target in a environment with static
and dynamic obstacles, and the requirements proposed in Section 2.1
need to be satisfied under previously mentioned assumptions. In a
100 km × 100 km × 20 km 𝑥 − 𝑦 − 𝑧 space, there are 𝑛 UAVs between
he starting point and the matching target. The minimum UAV speed
s 50 meters per second, the minimum turning radius is 2 km, and the
inimum flying altitude is 1 km. The minimal distance between UAVs

or the multi-UAV path planning problem is [50, 50, 20]𝑇 m.
There are four UAVs and nine obstacles in the region. As shown in

Table 1, their respective basic information is presented. Two scenarios
were built to show that RSCDWOA solves the described problem. In the
fully static scenario, which generally tends to produce locally optimal
solutions between adjacent static obstacles, it is shown that RSCDWOA
leads to globally optimal solutions for the trajectories. In mixed static
and dynamic obstacle scenarios, it is verified that RSCDWOA improves
the smoothness of the trajectory and outperforms other optimization
algorithms. The basic settings of obstacle locations for the two scenarios
are shown in Figs. 7(a) and 7(b), where the radius of influence is
𝑋 ∈ [4, 18], 𝑌 ∈ [5, 14]. In addition, a comparison is made between the
proposed approach in this paper and the Ref. [48]. The implementation
process of the simulation is displayed in Fig. 6, where APF is integrated
with RSCDWOA in path planning.

5.2. Selection of chaos map

Logistic map and tent map are the most commonly employed maps
for chaotic behavior. In this paper, the chaotic value distribution and
parameters of the two maps are shown and compared in Fig. 8.

When 𝜇 = 4, the logistic map has a better distribution, and 𝛽 begins
to bifurcate at about 0.7 − 0.75, therefore we choose to use 0.7 − 0.75.
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Fig. 7. Diagram of basic setting.

Fig. 8. The relationship between chaos value distribution and parameters.
9

Fig. 9. The distribution of the chaotic value of the corresponding parameter in the
dimension.

Fig. 10. Histogram:frequency and chaos value.

The distribution of the chaotic value of the corresponding parameter in
the dimension is shown in Fig. 9.
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Fig. 11. Boxplot of chaos values and parameter 𝛽.

Table 2
Wilcoxon test.
𝛽 0.70 0.71 0.72 0.73 0.74 0.75

𝑃 -value_1 0.0275 0.0043 0.0165 0.0067 0.0025 0.0193
𝑃 -value_2 0.0185 0.0092 0.0092 0.0037 0.0034 0.0279
𝑃 -value_3 0.0223 0.0012 0.0128 0.0025 0.0027 0.0124
𝑃 -value_4 0.0196 0.0121 0.0181 0.0098 0.0030 0.0243
Average 0.0220 0.0067 0.0142 0.0057 0.0029 0.0210

In order to show the selection strategy more clearly, we also draw a
histogram as shown in Fig. 10 to present the law of its distribution. It is
clearly shown that the logical map does not have a uniform distribution,
and the frequency is greater near 1, which is consistent with the proof
in Theorem 2. Next, we use the Wilcoxon test for the optimal choice of
the parameter 𝛽 of the logistic map between 0.7 − 0.75.

This paper selects six numbers uniformly between 0.7−0.75 with an
accuracy of 0.01. We then use hypothesis testing to determine whether
there is a significant difference from a uniform distribution under this
parameter. The range of the uniform distribution in this paper is 0 − 4.
In order to increase the reliability of the data inspection, it is necessary
to perform a circular displacement, add 1 to each displacement, and
divide it into 4 gears. Each parameter is inspected four times and the
average value is taken. As shown in Fig. 11 and Table 2, it can be found
that after the Wilcoxon test, the 𝑝-value of the six numbers are all less
than 0.05, and the null hypothesis is rejected. Among them, the 𝑝-value
of 0.74 is the smallest, so this paper finally selects 𝛽 = 0.74.

5.3. Verification of static obstacle avoidance

When an obstacle is located between the current location and the
target position, or when the areas of many obstacles form a con-
cave polygon, even if the attraction gain of the target is increased
in Refs. [48,49], it is still unable to jump to the local optimum or
escape the obstacle. As depicted in Fig. 12(a), the UAV is stuck at a
local optimum and its coordinates are [39.34, 68.35, 2.6]𝑇 km. Fig. 12(b)
demonstrates that WOA can avoid local optima with some probability,
but it does not pass 100% of the local optima and the path curvature is
still high after optimization. After using RSCDWOA, the original path
is smoothed and is able to pass 100% of the local optimum area. The
good smoothing effect is shown in Fig. 12(c).

5.4. Verification of dynamic obstacle avoidance

Fig. 13 displays the outcomes of three dynamic obstacles from a
numerical simulation used in the path planning process. The positional
relationship between the UAVs and three dynamic obstacles is depicted
in Figs. 13(a) and 13(b). Figs. 13(c), 13(d), and 13(e) show that the
UAVs can avoid obstacles 1 and 2 sequentially as well as dynamic
10
Fig. 12. Comparison diagram for trajectory optimization.

obstacle 3. As a result, as illustrated in Fig. 13(f), the desired location
is reached at 𝑡 = 103 s.

The left subfigure of Fig. 14(a) depicts the curvature of the full route
process. Clearly, the most intense chattering happens when the path
point is between 0 and 200. The right subfigure of Figs. 14(a) and 14(b)
depict the path’s curvature and curvature derivatives before and after
smoothing equally distributed between 0 and 200 at each waypoint.
After smoothing, it can be noted that the whole path’s curvature does
not exceed 2. This shows that the algorithm described in this paper is
effective for trajectory smoothing.

As comparisons, particle swarm optimization (PSO) and genetic
algorithm (GA) are used to fuse APF in Fig. 15 in this research. Fig. 16
depicts the evolution of the optimal fitness value in smooth path
optimization with respect to various optimization strategies. It can be
observed that, the fitness value is continuously updated during the
smooth path optimization process. This demonstrates that these opti-
mization algorithms may overcome common obstacle scenarios (such
as local capture and premature convergence), thereby reaching the
genuine optimal solution during the optimization process by jumping
out of the substandard solution. After 40 rounds, the fitness value
of every optimization algorithm convergence. It has been determined
that RSCDWOA has the lowest fitness value, indicating that it has the
highest adaptability.
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Fig. 13. Cases of avoiding multiple dynamic obstacles.
Fig. 14. Path curvature and curvature derivative before and after smoothing.
We compare the performance of different methods using the Root
Mean Squared Error (RMSE) and the Mean Absolute Error (MAE).
11
The RMSE and MAE values of each UAV under different optimization
algorithms are compared, and the better model is the one that yields
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Fig. 15. Dynamic obstacle avoidance based on APF fused with different optimization algorithms.
Table 3
Model evaluation indicators.

UAV No. Optimization algorithm MAE RMSE

UAV1

PSO 0.1983 0.4724
GA 0.1771 0.4449
WOA 0.1139 0.3293
RSCDWOA 0.0538 0.1762

UAV2

PSO 0.1952 0.4625
GA 0.1734 0.4435
WOA 0.1176 0.3391
RSCDWOA 0.0493 0.1724

UAV3

PSO 0.1986 0.4765
GA 0.1752 0.4438
WOA 0.1093 0.3258
RSCDWOA 0.0576 0.1864

UAV4

PSO 0.2027 0.4812
GA 0.1725 0.4436
WOA 0.1124 0.3279
RSCDWOA 0.0513 0.1742

the lowest RMSE and MAE values. It is shown that with RSCDWOA, the
MAE and RMSE of each UAV are found to be the smallest in Table 3.
Therefore, RSCDWOA has superior performance.

5.5. Statistical tests of RSCDWOA

To evaluate the performance of RSCDWOA comprehensively, a
mixed static and dynamic obstacle scenario is created with different
12
Table 4
Description of benchmark functions.

Function Dim Iteration Equation

Sphere 30 100 𝑓1(𝑋) =
∑𝑛
𝑖=1 𝑋

2
𝑖

Sumsquares 30 100 𝑓2(𝑋) =
∑𝑛
𝑖=1 𝑖𝑋

2
𝑖

Step 30 100 𝑓3(𝑋) =
∑𝑛
𝑖=1[𝑋𝑖 + 0.5]2

Quartic 30 100 𝑓4(𝑋) =
∑𝑛
𝑖=1 𝑖𝑋

4
𝑖 + random[0, 1)

Rosenbrock 30 100 𝑓5(𝑋) =
∑𝑛−1
𝑖=1 [100(𝑋𝑖+1 −𝑋2

𝑖 ) + (𝑋𝑖 − 1)2]
Schwefel 2.22 30 100 𝑓6(𝑋) =

∑𝑛
𝑖=1 |𝑋𝑖| +

∏𝑛
𝑖=1 |𝑋𝑖|

Rastrigin 30 100 𝑓7(𝑋) =
∑𝑛
𝑖=1[𝑋

2
𝑖 − 10 cos(2𝜋𝑋𝑖) + 10]

Griewank 30 100 𝑓8(𝑋) =
∑𝑛
𝑖=1

𝑋2
𝑖

4000
−
∏𝑛

𝑖=1 cos(
𝑋𝑖
√

𝑖
) + 1

Ackley 30 100 𝑓9(𝑋) = −20 exp
(

−0.2
√

1
𝑛

∑𝑛
𝑖=1 𝑋

2
𝑖

)

−

exp
(

1
𝑛

∑𝑛
𝑖=1 cos(2𝜋𝑋𝑖)

)

+ 20 + 𝑒

types of fitness functions, including unimodal functions (𝑓1 − 𝑓6) and
multimodal functions (𝑓7 − 𝑓9) [33,42] in Table 4. In addition, in
order to make a more comprehensive evaluation, two recently proposed
optimization algorithms with the best performance WOASCALF [50]
and SLAOS-WOA [51] based on the improvement of WOA are intro-
duced. We use the nonparametric Wilcoxon rank-sum test to compare
RSCDWOA with other well-known meta-heuristic algorithms on a pair-
wise basis. The results obtained based on the Wilcoxon rank-sum test
have the following three signs ‘−’, ‘∼’ and ‘+’. Table 5 declares the
results obtained from this test, the sign ‘−’ indicates that RSCDWOA
obtained worse results than other meta-heuristic algorithms. The sign
‘∼’ indicates that the results obtained by these algorithms are the same
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Table 5
Pair-wise comparison with RSCDWOA and all compared algorithms.

Function RSCDWOA vs. PSO RSCDWOA vs. GA RSCDWOA vs. WOA RSCDWOA vs. WOASCALF RSCDWOA vs. SLAOS-WOA

𝑓1 + + + ∼ ∼
𝑓2 + + – − ∼
𝑓3 ∼ + ∼ + –
𝑓4 – + ∼ ∼ +
𝑓5 ∼ + ∼ + +
𝑓6 + ∼ + ∼ ∼
𝑓7 + + + + ∼
𝑓8 + + + ∼ +
𝑓9 + + + + +
Total of + sign 6 8 5 4 4
Fig. 16. Best fitness in PSO, GA, WOA and RSCDWOA.

and there is no difference. The sign ‘+’ indicates that RSCDWOA gives
better results than other algorithms.

From the table we can conclude that the computational results
of RSCDWOA are much better than PSO and GA. In comparison,
RSCDWOA has comparable performance with WOA, WOASCALF and
SLAOS-WOA. Therefore, this paper will continue to test the perfor-
mance of RSCDWOA with the last three optimization algorithms in
terms of other metrics. The number of iterations for each algorithm is
100 and the dimension is 30. Four evaluation metrics such as the mean
value, the best one, the std and the 𝑝-value are calculated as shown in
Table 6.

As can be seen from Table 6, most of the results of RSCDWOA
outperformed other methods. The convergence curves of the four algo-
rithms with respect to nine benchmark functions are shown in Fig. 17.
Again, the results show that the RSCDWOA achieved better perfor-
mance than other optimization algorithms.

In addition, to test the performance of the algorithms, we further
listed the running time of RSCDWOA and other optimization algo-
rithms. Table 7 shows the average running time required to perform
each iteration. Each algorithm iterates 100 times in dimensions 20, 30,
50 and 100, respectively. Each experiment was repeated 10 times to
obtain the average running time of each iteration as shown. As can
be seen in Table 7, our method consumes a bit longer running time
than other methods. The reason why the proposed method consumes
more time is mainly due to the inclusion of perturbation vectors in
differential evolution, which increases the computational cost while
improving the robustness. Nevertheless, by introducing the reverse
search strategy, large increase in computational cost is prevented. In
conclusion, RSCDWOA largely improves its performance with a small
increase in computational time.

6. Conclusion

In this paper, we aim to address the issue of local optimum in
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solving dynamic planning problems using optimization algorithms. By
Table 6
Comparison of results (Mean, Best, Std, 𝑝-value) for unimodal and multimodal
benchmark functions.

Function Metrics WOA WOASCALF SLAOS-WOA RSCDWOA

𝑓1

Mean 9.98E−01 1.67E+03 9.53E−03 3.04E−04
Best 1.51E−01 9.18E+00 2.36E−03 3.39E−05
Std 1.61E+00 5.27E−03 2.55E−02 5.28E−04
𝑝-value 3.02E−11 7.27E−09 9.33E−05

𝑓2

Mean 5.82E−03 3.28E+00 4.38E−02 5.26E−05
Best 3.35E−04 2.75E−07 3.69E−04 4.92E−08
Std 7.92E−03 9.34E+00 6.53E−02 7.46E−05
𝑝-value 3.87E−08 5.03E−05 3.97E−09

𝑓3

Mean 8.72E−01 2.07E+00 6.52E−03 1.42E−03
Best 7.36E−02 2.31E−04 5.42E−04 9.13E−03
Std 3.82E+00 8.31E+00 9.75E−03 3.96E−03
𝑝-value 3.55E−11 5.86E−08 7.31E−04

𝑓4

Mean 3.17E−02 9.12E−01 2.98E−03 2.53E−03
Best 7.37E−03 2.73E−01 3.82E−05 5.23E−05
Std 6.36E−02 3.87E+00 6.34E−03 4.05E−03
𝑝-value 9.24E−14 3.75E−07 6.24E−11

𝑓5

Mean 5.42E−01 3.51E+00 2.13E−02 2.31E−03
Best 6.37E−03 2.21E−04 7.98E−04 9.25E−05
Std 7.84E−01 7.52E+00 5.65E−02 4.73E−03
𝑝-value 9.20E−12 5.32E−07 2.79E−18

𝑓6

Mean 3.24E−03 7.21E−01 4.54E−02 1.56E−03
Best 5.76E−04 9.74E−02 8.35E−04 9.96E−05
Std 2.12E−02 3.33E+00 3.97E−03 6.29E−02
𝑝-value 3.08E−04 5.62E−06 6.84E−11

𝑓7

Mean 3.75E−02 6.81E−03 4.28E−02 1.93E−04
Best 8.37E−04 7.36E−06 2.04E−04 2.09E−07
Std 5.24E−02 9.17E−01 5.15E−02 5.18E−04
𝑝-value 4.38E−09 8.37E−11 1.12E−05

𝑓8

Mean 4.32E−02 4.43E−04 2.91E−03 7.26E−05
Best 8.76E−04 6.92E−06 7.85E−05 2.21E−07
Std 7.73E−02 8.73E−04 8.51E−03 9.97E−05
𝑝-value 4.82E−04 8.63E−11 9.72E−21

𝑓9

Mean 8.13E−02 3.58E−03 3.48E−03 9.73E−04
Best 4.47E−03 8.56E−04 9.89E−05 7.56E−05
Std 2.32E−01 6.86E−02 8.31E−03 2.21E−03
𝑝-value 3.29E−14 8.68E−08 6.94E−24

Table 7
Comparison of average running time of each iteration for different algorithms.

Dimension WOA WOASCALF SLAOS-WOA RSCDWOA

20 0.0378 0.0228 0.0215 0.0326
30 0.0392 0.0258 0.0284 0.0306
50 0.1278 0.0678 0.0735 0.0839
100 0.4425 0.2832 0.2981 0.3196

combining attractive characteristics of the chaotic initialization, the
reverse search and the differential evolution methods, an improved
algorithm based on the whale optimization algorithm is proposed.
More importantly, it is demonstrated through concise theoretical proof
that the proposed algorithm converges globally in probability after the
addition of perturbation vectors, reflecting that the proposed algorithm
is both globally convergent and robust. In the simulation experiment,
the algorithm is integrated with the classical APF algorithm to solve

the path planning problem of multi-UAV facing multiple static and
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Fig. 17. Comparison of convergence curves of RSCDWOA and other four algorithms obtained in nine benchmark functions.
ynamic obstacles in a 3D scene. It is demonstrated through simula-
ion results that the proposed optimization algorithm can solve the
roblem of local optimality in traditional APF algorithm and achieve
he global optimal path planning. Meanwhile, the global convergence
f the theoretical proof is verified. Through comparison with latest
ptimization algorithms, the proposed algorithm is shown to have
etter performance in multiple metrics and stronger path smoothing
apability when applied to path planning problems. Future work will
ocus on the issue of collision avoidance among multiple agents, where
he shape and dynamics of the agents will be considered and more
mpacting factors will be investigated.
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