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Abstract—The probabilistic reachability problem, which in-
volves the computation of probabilistic reachable sets, is studied
for nondeterministic reach-avoid games. We consider a multi-
player reach-avoid game with an equal number of attackers
and defenders moving on a 2D plane with obstacles. Our work
provides a first attempt to address such a problem in stochastic
environment and has shown some preliminary results.

Index Terms—Reachability, Reach-avoid games, Stochastic
differential equations, Level set method.

NOMENCLATURE

N number of players

Ta;, Tp; states of the attackers and defenders, respec-
tively, m

VA, VD maximum speed of the attackers and defenders,
m/s

ai, d; control functions of attackers and defenders,
respectively

w brownian motion

Q bounded, open domain

Qobs set of obstacles

Qfree free space

Cij capture set

R¢o relative distance of capture, m

xﬁ’ﬁ controlled stochastic process

u, d joint control input of the attacking team and the
defending team, respectively

u, D sets of the joint admissible control inputs of
the attacking team and the defending team,
respectively

p probability of winning

10 wiener process

13 Zero mean process

E expectation

1k indicator function

\% value function

u*, d* optimal control input for the attacking team and

the defending team, respectively
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K, A reach set and avoid set

A*, D* winning strategy of the attacker and the de-
fender

g flowfield current

f,o deterministic and stochastic function

a, B direction of the attacker and the defender with
respect to the x-axis, rad

E, ;) database

€ capture relationship between the attacker and
the defender

E; set of all attackers that beat the defender D;

= set of all defenders that capture an attacker A;

I. INTRODUCTION

The theory of differential games has been applied in a wide
variety of fields such as robotics, spacecraft, aircraft control
and military combat. In differential games, the multiplayer
reach-avoid (RA) game (or pursuit-evasion game) is defined
between two adversarial teams of cooperating players, where
one team aims to reach a certain target while the other team
aims to prevent the success of their components. The game
is an excellent proxy for studying the tools needed to make
intelligent automation system a reality.

The multiplayer RA game has been explored in several
ways. Many of the previous research focus more on the multi-
agent coordination aspect of the game while simplifying as-
sumptions on the adversarial aspect [1]. In more complex RA
games such as air combat, where the roles of the players may
change over time. Adversary actions are predicted based upon
expected opponent strategies, with feedback and re-planning
used to adjust for deviations from the predicted actions at
run-time [2]. In a more general situation where no prior
information on each side is known, the ideal framework to
use is the Hamilton-Jacobi-Isaacs (HJI) reachability approach,
in which an HJI partial differential equation (PDE) is solved
to obtain optimal strategies for both teams [3].

In Ref. [4], the authors address the RA game, whereby
each pair of defenders and attackers operates within a compact
domain with obstacles, utilizing a HJI reachability approach
to provide a solution. This solution is then employed in
the multiplayer setting, where defenders are assigned against
attackers via a graph-theoretic maximum matching. In Refs.
[5]-[7], the authors propose utilizing the maximum matching
method to extend the outcome of a 1 vs. 1 RA game to a
multi-agent scenario through a maximum matching approach.
In Ref. [8], a mixed-integer programming model is proposed to
determine the assignment logic between pairs of vehicles when



there are more than two vehicles, thereby ensuring safety.
These methods are based on the outcome of a 1 vs. 1 RA
game and could be enhanced by integrating more tractable
HJ reachability results. The above research provides useful
insights into the RA problem, but its application is limited by
the use of deterministic system dynamics motion models and
the lack of consideration of defender collisions.

Most RA games are studied in a deterministic setting,
ignoring the influence of uncertainty of system dynamics
and the environment [9]. Moreover, complex systems such as
those pertaining to air traffic and infrastructure often exhibit
complex behaviours that arise from heterogeneous interactions
[10], [11]. These behaviours are essentially hybrid in nature.
Additionally, the uncertainty inherent to the interleaved dis-
crete and continuous evolution of such systems also leads to
the emergence of stochastic systems models, which contain
both deterministic and stochastic components. The RA games
problem deals with the determination of initial states set in the
deterministic hybrid system. This system can be defined as one
in which at least one control strategy can be found to steer the
system to a target set while guaranteeing collision avoidance
[12], [13]. A hybrid system comprising both deterministic
and stochastic dynamics is often more challenging to analyse
than a deterministic hybrid system. Consequently, this paper
primarily examines the RA game problem for deterministic
and stochastic dynamics systems. Hence, there is a necessity
to extend current solutions to RA games into a more general
framework where stochastic part of the system dynamics is
considered. In Ref. [14], a connection between stochastic RA
problems and stochastic optimal control problems involving
discontinuous payoff functions are established. However, the
approaches in Ref. [14] did not consider the interactions
among multiple players of the games. Inspired by [9], our re-
search attempt to address the problem of multiplayer stochastic
RA game using probabilistic reachability analysis.

Figure 1 shows an overview of database building and online
implementation based on deterministic and stochastic dynam-
ics model for the RA games in this paper. The contributions
and innovations of our work are:

(i) The probabilistic reachability problem in the nondeter-
ministic RA game involving the computation of probabilistic
reachable sets is considered and decoupled into a stochastic
RA game problem with the same number of defenders and
attackers offline and a matching problem with different number
of defenders and attackers online.

(ii)) An offline database of stochastic RA games is built
using probabilistic reachability analysis for RA games with the
same number of defenders and attackers based on nonlinear
dynamics flowfield.

(iii)) A rematching game strategy with different number of
defenders and attackers is proposed using an online maximum
matching method based on an offline database.

The paper has the following outline. In Sec. II, a general
framework of a multiplayer stochastic RA game is given. In
Sec. III, the process of probabilistic reachability analysis based
on the RA game and the dynamics flowfield is introduced.
The method of defender-attacker pair online rematching using
offline database are proposed in Sec. IV. The method is
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Fig. 1. An overview of database building and online implementation based
on deterministic and stochastic dynamics model for the RA games.

demonstrated and validated through simulation results are
shown in Sec. V. Finally, in Sec. VI, the full paper is briefly
summarized, followed by future work.

II. STOCHASTIC REACH-AVOID GAMES

We consider a multiplayer reach-avoid game between a team
of N attackers, and a team of N defenders. Each player is
confined in a bounded, open domain 2 C R2, which can be
partitioned as a set of obstacles Qs and free space 2¢rce.
Let za,,2p; € R? denote the states of the attackers and
defenders respectively Initial conditions of the players are
denoted by 29 A ,xOD € Qfpee,t = 1,2,...,N. In stochastic
reach-avoid games, ‘the dynamic of the system is composed
of a deterministic part and a stochastic part. The deterministic
part of the dynamics are defined by the following decoupled
system for ¢ > O:

4, (t) = vaai(t),
ip,(t) = vpd;(t),

where a;(-),d;(-) represent the control functions of attackers
and defenders respectively. The attackers have the same maxi-
mum speed v4 and the defenders have the same maximum
speed vp. Assuming the movement of both attackers and
defenders are influenced by the Brownian motion W, the
dynamics of the players can be denoted by the following
stochastic differential equations:

rp,(0) = xODj

)

Za,(t) =vaa;(t) + o (xa,,a;) dW,

j?Dj (t) = Ude(t) +o (xDj,dj) dW,

The players’ joint state and joint initial condition become
x = (za,,2p,), x° = (2,2}, ) respectively. In this reach-
avoid game, the attacking team aims to reach the target as
shown in Fig. 3, a compact subset of the domain, without
getting captured by the defenders. The capture conditions are
formally described by the capture sets C;; C 22V for the pairs
of the players. In this paper, we define the capture sets to be
Cij = {x€ Q" |||lza, — 2p,|2 < Rc }, the interpretation
of which is that an attacker is captured by a defender if their
relative distance is within R¢o [9]. Consider the special case
in which each team only has one player, we can first compute

24,(0) = 29,
rp,(0) = a:%j
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the probabilistic reachable set for the attacker which predicts
the region of winning with high probability. Then we extend
the Probabilistic HJI framework to deal with the multiplayer
reach-avoid games.

III. REACHABILITY ANALYSIS

A. Probabilistic Hamilton-Jacobi-Isaacs Reachability

Stochastic Differential Equations (SDEs) can be used to
describe the behavior of a stochastic process. Instead of sim-
ulating each realization of the stochastic process, the forward
Kolmogorov equation (or Fokker-Planck equation) can be
used to describe the time rate of change of the Probability
Density Function (PDF) [15]. Combining the optimal control
framework with the time-evolution of the PDF will give rise to
the field of probabilistic reachability analysis. The probabilistic
reachability analysis will compute the transition probability to
a certain state. Alternatively, the value function will be equal
to the conditional probability of being in the initial set IC at
time ¢t = 0 and in a final state x at time ¢t = 7.

. . d
Consider a controlled stochastic process x; s

x(t) = f (x,u,d) + o (x,t),Vt € [0,T] 3)

where u € U is the joint control input of the attacking team,
and d € D is the joint control input of the defending team. The
sets U and D represent the sets of the joint admissible control
inputs of the attacking team and the defending team, respec-
tively. Because the dynamics are stochastic, it is no longer
possible to minimize the value function. Instead, the expected
pay-off is minimized over all possible further realizations of
the Wiener process

t) = minmaxE [ (x24T 4
V(¢ 2) = minmaxE | ¢ (x5 (T) )
Let K be the non-empty target set in R%, p € [0,1] and t < T..
Consider the reachable set €2; under probability of success p,
or the set of initial conditions « for which the probability that
there exists a trajectory xﬁ’;f that reaches set IC at time 7T,

associated with the admissible control w € U and d € D is at
least p [16]

RAL = {xeRdEIuEU,dED, P [fo(T) cK
and x;70(T) ¢ A} > p}

The sets R.A{ can be characterized by using the Level Set
approach

&)

RA? = {z € R", V(z,t) > p} (6)

with ¢(z) := 1x(x). An intuitive derivation can be made if it
is assumed that the value function is differentiable:
V(z,t) = minmax {E[V (z + Af(, u,d) + & ¢ + At)]}
(7N
with £ ~ N (0,0(z,t)) a zero mean process which is normally
distributed with the standard deviation a function of both state

and time. Taking the Taylor expansion of the value function by
means of Itd’s calculus. Since dz? is of the order dt because

of the Wiener process, the expansion must be performed up
to the second order.

V(z+ Az, t + At) = V(x,t) + Vi(z, t) At + Vy(x, t) Az

1
+ 3 (VM(J;, t)Ax? + 2V Az At + Vi (x, t)AtZ) +0(6%)

(®)
where Az = Af(x,u,d) + £. Keeping all terms of order
O(At), we have the Dynkin Operator [14]:

EV]=V(z,t) + Af(z,u,d)Vy(z,t)

1 9
+ 5T (02, 1) Vi (2,1)) ©)
Substituting into V' (x,t) and dividing by At
V(z,t) — V(z,t+ At)
At
1
— 3 T - T
= 11}1615{1%165%{ {fo(%t) + 2T7" (U(x,t),a(x, t) VLJ)}
10)

For the limit of At — 0 the value function is characterized
by the viscosity solution to the stochastic HIB equation [14]

%(x,t} + sup {?x/(a:,t)f(x,u,d)}
2

+ %Tr {a(x,t)a(z,t)Taa V(:z:,t)} =0

2

(1)

The stochastic HIB equation can be solved using a similar
method as for the deterministic HIB equation. Next to the
convection term, an additional diffusion term is added to the
Level-Set (LS) method. In contrary to the deterministic reach-
able set, the value function in the probabilistic reachability
analysis is not represented by a signed distance function.
Instead, an indicator function is used [14]:

1
1g(z) = {0

The regularization of the indicator function is done by:

ifr e

if z ¢ K (12)

Ve(z) =1— min (1,max (07 —édist(x, IC))) (13)

where V#(z) is L-Lipschitz continuous.

The optimal control input for the attacking team is given
by [17]:

*(x,t) = i t)" d t)] (14

u* (x,t) = arg minmax s(x, )7 [£(x,ud) + 0 (x,0)] (1)
where s = 2% and ¢ € [0, 7.

Similarly, the optimal control input for the defending team
is given by

d*(x,t) = arg max s(x, )T [f(x,u*,d) + 0o (x,t)] (15)

Taking T" — oo, we obtain the set of initial conditions from
which the attackers are guaranteed to win. We denote this
set RAL (K, A). The set of initial conditions from which the
defenders are guaranteed to win is given by all points not in
RA?_. For an N vs. N game on a two-dimensional domain
Q) C R?, the reachable set R.A~_ is 4ND.



B. The Reach-Avoid Game

In a two-player reach-avoid game, the goal of the attacker
is to avoid being captured by the defender while reaching the
target set 7. This reach set IC is represented by the attacker
being inside 7. On the way to 7, the attacker must avoid
being captured by the defender. This is represented by the set
C.

Both players need to avoid the obstacle (2,5, Which can
be viewed as the locations in 2 where the players has zero
velocity. In particular, the defender wins if the attacker is in
Qs and vice versa. Thus, we define the reach set and the
avoid set as

K={x€Q?|za € TA|za—2pl2>Rc}

16
U{XGQQ|$D€QO(,S} (16)

A={xeQ|[|za—zpll2 < Rc}

17
U{X€Q2|xAEQObS} 17

Given these sets, we can define the corresponding level set
representations Py, P4, and solve (11). If Q C R2, the
result is RAL, € R?, a 4D reach-avoid set with the level
set representation V' (x,00). The attacker wins if and only if
x0 = (x%i,x%j) e RAY.

If x° € RA”, then the attacker is guaranteed to win the
game. Applying Eq. (14) to the two-player game, we obtain
the explicit winning strategy is given in Ref. [17]:

Su (anvat)

_— 18
ou@aan Ol O

A*(xa,xp,t) = —va

where s = (84, $4) = 8(67‘/.
TA,TD)
Similarly, if x° ¢ R.A%_, then the defender is guaranteed
to win the game. Applying Eq. (12) to the two-player game,

we obtain the explicit winning strategy given in:

sa(xa,xp,t)

— = 19
[54@a,20,0)2 (19)

D*(xa,xp,t) =vp

C. Dynamics Flowfields

The dynamics of the flowfields are nonlinear. We let g(z, y)
denote the flowfields current at position (z,y) [18], [19]. We
assume that the current flows with constant direction, with the
magnitude of g increasing in distance from the middle of the
flows:

1+ ay? ] 20)

9(x,y) = { 0

similarly, to describe the uncertainty influenced by the Brow-
nian motion, we consider the diffusion term

olz.y) = { - } @)

Oy

We assume that attackers and defenders can change their
directions «, [ instantaneously. The complete dynamics of
the attacker and the defender are given by

)| o5

dya 0 oy

1+ ay? + v cos(a) I
v 4 sin(a)

(22)

1+ ay? + vp cos(B)

[ dLL'D
vp sin(p)

o 0
ds + r
dyp } i {

0 ay}dW

(23)
where «, 8 € [—m,«] is the direction of the attacker and the
defender with respect to the = axis. We can get «, 5 based on
the term i s“((“’me) and 22(@4.2DD  fom Egs. (18) and

su(za,xp,t)|z lsa(za,zp,t)2
(19).

Obviously, the probability of success starting from some
initial position in the whole region depends on starting point
(z,y). As shown in the previous Sec. III-A, this probability
can be characterized as the level set of a function. We can
update stochastic HIB equation based on Eq. (11) as follows

oV oV
——(z,y,t)+ sup {(w, y,t) (14 ay® + va cos(a)
ot a€[—m,7] oz ( )

oV , 1 OV
+87y(x,y,t)v,4 bln(a)} + §T7‘ {%ax? (z, y,t)}
1 , 02V B
+ iTT {%agﬂ (z,y,t)} =0
(24)

oV oV
—(z,y,t) + sup {(x7y,t) 1+ ay® 4 vp cos(B)
ot pef-mx | 0T ( P )

ov 1 0%V
+ G opsin(s) } + 57 {2 5 (w00
1 5 02V
+§TT’ {Jyw(x,y,t) :0
(25)
It can be shown that the orientation controller value for
the attacker and the defender maximizing the above Dynkin
operator is
aVv
a*(x,y,t) : = argmax ((m,y,t) cos(a)
a€[—m,n] Ox

oV .
—l—a—y(:m Y, t) sm(a))

= arctan, (gi“ﬁ) (z,y,1t)

B*(@,,1) : = arg max (avw,y,t) cos(6)
Be[—m,m) Ox

(26)

ov

= arctang (gy“;) (z,y,t)

Therefore, the stochastic HIB equation can be simplified to

ov

av ,
E(@vat) + %(J),y,t) (1 +ay )

1 , 0%V 1 , 0%V (28)
+ iTT {O’.’caxg('ray7t)} + iTT {gyay2($7yvt)
+oal|VV(z,y,t)|| =0

ov

ov ,
E(xayﬂt) + %(l‘,y,t) (1 +ay )

1 0%V 1 5}
102 () b+ —Trd 02 S L
+ 51T {o’z 52 (z,y, )} + 51T {ay 52 (a:,y,t)}
+op||VV(x,y,t)]| =0



where YV (z,9,6) = | 9 (2,9,6) 9 (2.9,1) .

IV. DATABASE BUILDING AND ONLINE IMPLEMENTATION
A. Database Building

HIJ reachability analysis is computationally intractable when
the total number of attackers and defenders is greater than
three. Therefore, based on the 1 vs. 1 reach-avoid results,
a database containing offline HJ reachability for different 1
vs. 1 scenarios can be designed and established. Based on
our previous work on safe flight envelope prediction system
[20], we propose to use a database to maximize the number
of attackers that can be assigned to a defender. This database-
based extension is defined as follows:

maximize Zem, eij C Ee, ) (30a)
,J

subject to e; ; € {0,1}, Vi, j (30b)

eyl V) (30c)

Zem <1, Vi (30d)
J

e;; =0, Vie€E;Vj (30e)

€ = 1, VZ,V] €z (30f)

The database E(, ;) is determined by pairs of two-player
reach-avoid games in the database, where e; ; denotes the
capture relationship between the attacker A; and the defender
D; in the database. When e; ; = 1, it indicates that the
defender D is assigned to capture the attacker A; ande; ; =0
otherwise.

We will then construct the constraints for this database.
Firstly, the constraint (30c) limits the total number of attackers
assigned to the defender D; at any time to at most one.
Secondly, the constraint (30d) ensures that an attacker can be
captured by at most one defender to avoid the case where
multiple defenders are assigned to only one attacker. This
upper bound is limited by the computational power of the
HIJ reachability analysis.

Let Z; be the set of all attackers that beat the defender D;
in a 1 vs. 1 game in this database. =; be the set of all defenders
that capture an attacker A; in a 1 vs. 1 game. The constraint
(30e) ensures that by directly setting e; ; = 0, a defender Dj
cannot be assigned to an attacker A;, i.e. it cannot win a 1 vs.
1 game. The constraint (30f) ensures that by directly setting
ei;,; = 1, a defender D; can be assigned to an attacker A;, i.e.
it can win a 1 vs. 1 game. The set Z; and =; can be easily
constructed using the pre-computed reach-avoid set R.AZ,
in the database. Thus, if the j-th defender D; is assigned
to defend the i-th attacker A; with maximum matching, the
strategy based on Egs. (18) and (19) that guarantees that A;
never reaches the target is

84 (SCAmej,t)
Isa (za,,2p,,t)]l2

Di(xa,,xp,,t) =vp 31)

Pairs of 1 vs. 1 reach-avoid game results can be easily
computed, but adding single versus multiple pairs of HJ
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Fig. 2. A multiplayer reach-avoid game with dynamics Flowfield and
maximum matching. The Flowfield g(z,y) can be considered as a dynamics
disturbance. The attacker and the defender must overcome the disturbance of
Flowfield to complete their own tasks.

reachability analysis computations may be difficult to handle.
Therefore, it is important to compute as many 1 vs. 1 reach-
avoid game results as possible so that the database can
provide as much information as possible while maintaining a
reasonable amount of data for a defender to capture multiple
attackers.

B. Online Maximum Matching

Our database building solution in Sec. IV-A determines
the capture matching of an attacker to each defender that is
part of a maximum pairing based on the current state of all
players, and the matching does not change until the current
capture task is completed. However, the bipartite graph and its
maximum matching values can be updated online as player’s
states change over time in the game. In the online maximum
matching problem, we have an uncertain bipartite graph G.
In addition to needing to complete the capture task that
have already been matched, a defender must perform online
rematching to complete additional capture task. Therefore, we
iteratively perform matching updates based on the information
in the database after each time step to account for these
changes. Our online maximum matching algorithm can be
summarised as shown in Algorithm 1.

When At — 0, the offline database building process
computes a bipartite graph and its maximum matching as a
function of time. When the maximum matching is not unique
in the database, the defender can choose a different maximum
matching and still be guaranteed to prevent the same number
of attackers from reaching the target.

On the other hand, it is possible that the size of the
maximum matching increases with time. This can happen if
the joint configuration of the players causes the generated
bipartite graph to have a larger maximum matching value than
before, since the size of the maximum matching only gives an
upper bound on the number of attackers that can reach the
target. Therefore, we design the online rematching process



Algorithm 1 Online Maximum Matching
Require: RA?,
1: Initialization: states of all players (x)
2: Offline database
3: for Maximum capacity of the database do
4:  Update new player positions
5:  Construct a bipartite graph with two sets of nodes A;,
D;j
: Determine whether D; can win against A;, for all j
7. Construct the bipartite graph G and find its maximum
matching
8:  For duration At, the optimal control inputs and trajec-
tories for each attacker and defender are computed via
Eq. (31)
9: end for
10: Online rematching
11: if the number of attackers increase then
12:  while not all attackers captured do

13: Determine the constraint set =; and =;

14: Apply optimal controls for defenders via database
15: Update states of all attackers and defenders

16:  end while

17: else

18:  Use offline database directly

19: end if

based on the offline database. A defender, after completing
the previous capture task, uses the samples in the database
to recalculate the next attacker that can be captured and
rematches with it until there are no capturable attackers.

Due to the continuity and optimality of the probabilistic
HJ controller, the defender is able to ensure the success of
each capture task with high probability. Thus, our method
guarantees that the maximum number of attackers reaching the
target does not increase as the defender faces more attackers.
Instead, it decreases as the game plays out and new attackers
are assigned. Hence, the whole schematic of our method is
shown in Fig. 2.

V. SIMULATION

For the following numerical simulations we fix the diffusion
term o, = 0.5 and o, = 0.2 in (21), and consider a non-
uniform dynamics flow with ¢ = 0.01 in (20). We illustrate our
stochastic reachability in the example below. The probabilistic
HII reachable sets are calculated using the Level Set Toolbox
[21]. We calculate the reachable set by incrementing 7" until
convergence. The computation is done on a 4D grid with 50
nodes on each dimension. The example is shown in Fig. 3.
There are four attackers and four defenders playing on a square
domain with obstacles and all players have equal speeds. To
visualize the 4D set in 2D, we view the RA set at the slices
representing the initial positions of different players. Unlike
deterministic RA games, where reachable sets decides the
winning or losing conditions of the players, the probabilistic
reachable sets indicate the probability of winning under the
influence of stochastic process on the RA game.

In each subplot of Fig. 3(a), the 2D slice shows the
probabilistic “winning” regions (p = 0.8) of the attacker with
respect to each defender. Attackers whose initial positions
lie in the region have the probability p = 0.8 of winning
against the defender. For example, in the upper left subplot
of Fig. 3(a), since the defender is too far away from the
target, the probability of losing to all four attackers is 0.8,
while in the lower left subplot, the defender wins against
three of the four attackers with the probability of 0.8 since
it locates near the target. Hence, the shape of the probabilistic
reachable sets in Fig. 3(a) is determined by the initial positions
of four defenders. Similarly, Fig. 3(b) shows the probabilistic
“winning” regions of the defenders, in which the defenders are
guaranteed to win against the attacker with high probability
of 0.8. As shown in the upper right subplot of Fig. 3(b),
for example, only one of the four defenders have the high
probability of winning the attacker due to its short distance to
the target.

Figure 4 shows the bipartite graph (thin green solid line)
and the maximum matching value (thick green dashed line)
obtained after applying the algorithm from the offline database
described in Sec. IV-A. The maximum matching size is 4,
which means that no attacker can reach the target.

Figure 5(a) shows the results of a 4 vs. 4 reach-avoid game
simulation performed over the course of 0.8 time units to
illustrate the pairing of defender-attacker in an offline database.
The probabilistic HJ reachability analysis makes the At time
units vary continuously to compute a bipartite graph and its
maximum matching. The initially unmatched defender D,
plays optimally against the closest attacker according to Eq.
(31). The attacker adopts a suboptimal strategy by choosing the
shortest path to reach the target while avoiding obstacles and
disregarding control inputs from other players in the game.
The green dotted line in Fig. 5(a) indicates the matching
relationship between the defender and the attacker at this
moment.

At t = 0 (top left graph), the initial size of the maximum
matching is 3. At ¢ = 0.2 (top right graph), the player moves
further. At ¢ = 0.5 (bottom left graph), attacker As is in a
losing position against defender Dy because the attacker is
not playing optimally. As a result, the maximum matching
now assigns attacker As to defender Ds. In this way a perfect
matching is created, preventing any attacker from reaching the
target. Finally the whole process ends at ¢ = 0.8 (bottom right
graph) and the results are recorded in the offline database.

Figure 5(b) shows the 2 vs. 4 probabilistic HJ reach-avoid
game scenario. The initial size of the maximum match att = 0
(top left graph) is 2. Using the optimal control obtained by
Eq. (31) through the offline database in our method, using the
computed reach-avoid set R.A%L, defender D; is assigned to
capture attacker A; and defender D is assigned to capture
attacker As. At t = 0.525 (bottom left graph), the attacker
A; and Aj are captured, respectively. Meanwhile, the offline
database continues to be used to reassign defenders and the
remaining uncaptured attackers, and the maximum matching
is updated online. At ¢ = 0.875 (bottom right graph), the
remaining attackers are also successfully captured by the
defender.
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Fig. 3. 2D slices of reachable sets in a 4 vs. 4 stochastic reach-avoid game.
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Fig. 4. Bipartite graph and maximum matching results. Each edge (thin
green solid line) connects a defender to an attacker, and the other defender is
guaranteed to win, creating a bipartite graph. A maximum matching of size
4 (thick green dashed line) means that no attacker can reach the target.

In contrast, with the baseline method in the offline database,
a defender can only capture a attacker as shown in Fig. 5(a).
Since any 1 vs. 1 task in the offline database is valid, initially
the defender is assigned to capture the attacker with the highest
current capture probability. Through multiple rematchings, the
defenders complete all capture tasks with high probability.

VI. CONCLUSION

This extended abstract gives a brief introduction to the
work we’ve been doing on probabilistic reachability analysis
in stochastic reach-avoid games, and we extend this work
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(b) Reachable sets w.r.t four different initial positions of attackers.

further. Compared to the current offline maximum matching,
we propose online maximum matching by constructing an
offline database and online rematching. In the simulation part,
we first construct the offline database. By solving the 4D
HJI PDE, we can determine the probability of winning for
both attackers and defenders in optimal conditions through
the boundaries of probabilistic reachable sets. Further, we use
the offline database to implement the time-varying multiple
players game by our proposed online maximum matching.
Future work will focus on the extension to the offline database
to approximate high-dimensional games by neural-network in
order to achieve high-dimensional game storage for our offline
database.
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