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In this paper, a whole novel method, called manoeuvrability enhanced reinforcement learning

via gaussian process (MERL-GP), is proposed to deal with problems including escape strategy,

local optima, and uncertainty for multi-robot high-dimensional data. MERL-GP contains

manoeuvrability action, composite reward mechanism, and gaussian process. Specifically,

manoeuvrability action provides more escape strategies. Composite reward mechanism

overcomes the sparse reward and local optima problems. Gaussian process approximation

solves the Q-function and allows an accurate online update of the parameters of the posterior

mean and covariance. Simulation and experiment results on escape tasks for ground and aerial

robots demonstrate the effectiveness and robustness of our method.

Nomenclature

𝑔𝑝𝑖 , 𝑔𝑒 = positions of the pursuer i and evader

𝑟𝑑 = detection range

𝑟𝑐 = communication range

𝑁 = number of the pursuers

𝑣𝑝𝑖 , 𝑣𝑒 = velocities of the pursuer i and evader

𝑚𝑝𝑖 , 𝑚𝑒 = mass of the pursuer i and evader

𝐻𝑝𝑖 , 𝐻𝑒 = driving force of the pursuer i and evader

𝜖𝑝𝑖 , 𝜖𝑒 = noise of the pursuer i and evader

𝑆𝑡 = environment state

𝐴𝑡
𝑝 = action space of the pursuer
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𝑜𝑡
𝑝𝑖

= observation received by pursuer i

𝜋 = training policy

𝐽 (𝜋𝑝) = expected discounted returns of the pursuer

𝑅𝑝 , 𝑅𝑒 = long-term rewards of the pursuer and evader

𝛾 = discount factor

𝑄(𝑠, 𝑎𝑒), 𝑄(𝑠, 𝑎𝑒)∗ = value function and optimal value function

𝑄̄,Δ𝑄 = mean and random zero-mean residual

𝑉 (𝑠𝑡 ), 𝑉 (𝑎𝑡𝑒) = state and action value function

𝜀 = update rate

N = normal distribution

𝜃 = main network parameter

𝜆 = objective network parameter

𝐸 = manoeuvrability action

𝛿 = potential field coefficient

𝜌 = euclidean distance between the pursuer i and evader

I. Introduction

Interaction in multi-robot systems is widely known in nature [1] and various human activities, including missile

guidance [2], autonomous aircraft [3], and emergency rescue [4]. To better understand and predict potential outcomes

of interactions among multiple robots, each robot has its own goals and preferences. Thus it is essential to have potential

decision-making mechanisms among them. Uncertain interactions among robots can be studied within the framework of

dynamic non-zero-sum multi-player games. A special class of such problems is pursuit-evasion games, where multiple

players seek to capture or evade each other. In this paper, we consider steering the evader to avoid capture by multiple

pursuers while the pursuer applies multiple pursuit strategies. Finding exact solutions to such pursuit-evasion games can

be a complex task due to the high dimensionality of the problem. Specifically, there are difficulties in learning complex

strategies in high-dimensional state and action spaces as the number of robots and spatial dimensions increases [5–7].

Multi-robot pursuit-evasion games are usually considered as an optimization problem with the objective of

minimizing time and energy costs. Time-optimal geometric forms of pursuit-evasion strategies are studied in Refs.

[8, 9], and optimal solutions are provided. In Ref. [10], a method is proposed to deal with the pursuit-evasion differential

game in the presence of disturbance in dynamic flow-field with one evader and multiple pursuers. The special case

where the pursuer is faster than the agile evader is studied from a bionic perspective in Ref. [11].

Moreover, in the current research on pursuit-evasion games, most of the studies have focused on the pursuit conditions
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and capture strategies of the pursuers, such as Refs. [12–16]. Whereas in studies that focus on the evader, such as Refs.

[11, 17]. The optimal escape strategy for two pursuers faced by an evader in two scenarios where the pursuers can have

access to the position-velocity information of the evader and only to the position information in Ref. [17].

Recently, multi-agent reinforcement learning (MARL) has made great progress in pursuit-evasion scenarios. A

number of MARL methods are proposed, but they have their own disadvantages. Multi agent deep deterministic policy

gradient (MADDPG) [18], which employs a centralized training framework with decentralized execution to enhance the

cooperative behaviour of agents in a hybrid cooperative competitive environment. Similarly, the cooperative pursuit

problem is addressed by formulating a communication strategy using an improved RL-based method (MARL-ring and

MARL-line) in Ref. [19]. Although MADDPG, MARL-ring and MARL-line can improve the cooperative ability of

robots, these methods do not apply to environments with a large number of robots as they require the use of all the

robots’ states or observations in constructing their critic networks. As the number of robots increases, these methods

will become increasingly difficult to be trained.

To address these problems, Q-learning has been taken into consideration and applied to pursuit-evasion scenarios,

especially for the evader escape strategy [20]. Inspired by its potential, some Q-learning-based methods are applied

to game problems in Refs. [21, 22]. In addition, the design of manoeuvrability action [23] and reward allocation

[24] in a game strategy is critical to the effective implementation of the strategy. For stochasticity and uncertainty in

the presence of disturbances and noise, learning-based frameworks via gaussian processes have been widely used for

safety-guaranteed control systems in Refs. [25–27]. However, these research methods are not satisfactory for solving

problems with high dimensionality.

To address the limitation of the above problems, a manoeuvrability enhanced reinforcement learning (MERL) is

proposed and additional Gaussian Process (MERL-GP) is used to enhance the efficiency of high dimensionality, which

includes manoeuvrability action, composite reward mechanism, and gaussian process. The main contributions of this

paper are summarized as follows:

1) MERL provides high probability escape strategies for the evader facing the pursuers with kinds of strategies in a

pursuit-evasion scenario and solves the problem of slow learning efficiency. Manoeuvrability action provides

more escape strategies potential and composite reward mechanism overcomes the sparse reward and local

optimum problems.

2) MERL-GP simultaneously solves the problem of difficulty in solving high-dimensional pursuit-evasion games

and difficulty in training with high-dimensional data by solving the Q-function through the approximation via

GP, which implies that it reduces the difficulty of training due to the increase in the number of robots and can be

scaled up with a large number of robots in training.

3) For stochasticity and uncertainty of the system, the value function is learnt by GP regression using Monte Carlo

samples with discounted reward as our target, which allows for an accurate online update of the parameters of the
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posterior mean and covariance.

The paper is organized as follows. Section II gives problem formulation. The preliminaries are described in Sec.

III. The methodology of MERL and MERL-GP to use manoeuvrability action, composite reward mechanism, and GP

is presented in Sec. IV. The method is demonstrated and validated through simulation shown in Sec. V. In Sec. VI,

semi-physical experiment is carried out in several scenarios. Section VII concludes the paper.

II. Problem Formulation
In a general pursuit-evasion game, ground robots in two-dimensional space are considered in this paper to evaluate

our method. Subsequently, our method can be naturally extended to aerial robots in three-dimensional space as well.

As shown in Fig. 1, robots represented by circles or balls with colours move in a rectangular or cuboid map. The

boundary condition for the environment is the each side of the map. The boundary is considered as an obstacle. Each

robot will be penalised for crossing the boundary. In addition, all robots are randomly generated in a map where the

detection range of a robot is denoted as 𝑟𝑑 and the communication range is denoted as 𝑟𝑐.
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Fig. 1 Illustration of ground robots and aerial robots in a pursuit-evasion game.

In this paper, each robot can only obtain the state of other robots within the detection range 𝑟𝑑 . The environment

of this setting is considered partially observable [28]. If a robot wants to obtain the states of other robots beyond the

detection range, it needs to communicate with the other robots. For more details on the communication setup refer to

Ref. [29]. Communication is only allowed to occur with pursuers or evaders in the same team.

In Fig. 1(a), we consider a pursuit-evasion 2D environment with 𝑁 pursuers and an evader. Let 𝑔𝑒 = [𝑥𝑒, 𝑦𝑒] and

𝑔𝑝𝑖 = [𝑥𝑝𝑖 , 𝑦𝑝𝑖] denote the positions of the evader and pursuer 𝑖, and 𝑣𝑒 = [𝑣𝑥𝑒 , 𝑣
𝑦
𝑒 ] and 𝑣𝑝𝑖 = [𝑣𝑥𝑝𝑖 , 𝑣

𝑦

𝑝𝑖
] denote the

velocities of the evader and pursuer 𝑖, respectively. 𝜃𝑝𝑖 denotes the angle between the line-of-sight and velocity of the
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pursuer 𝑖 and evader. In addition, 𝑆𝑡 denotes the state of the environment at time 𝑡, including the velocity and position

information of all robots. The representation of the 3D environment is similar and its details are shown in Fig. 1(b).

Besides, the dynamics model of each robot in this paper is a double-integrator model

¤𝑔𝑝𝑖 = 𝑣𝑝𝑖 , ¤𝑔𝑒 = 𝑣𝑒

¤𝑣𝑝𝑖 =
𝐻𝑝𝑖

𝑚𝑝𝑖

+ 𝜖𝑝𝑖 , ¤𝑣𝑒 =
𝐻𝑒

𝑚𝑒

+ 𝜖𝑒
(1)

where 𝑚𝑝𝑖 and 𝑚𝑒 are the mass of pursuer 𝑖 and evader, 𝐻𝑝𝑖 = (𝐻𝑥
𝑝𝑖
, 𝐻

𝑦

𝑝𝑖
) or 𝐻𝑝𝑖 = (𝐻𝑥

𝑝𝑖
, 𝐻

𝑦

𝑝𝑖
, 𝐻𝑧

𝑝𝑖
) and 𝐻𝑒 = (𝐻𝑥

𝑒 , 𝐻
𝑦
𝑒 )

or 𝐻𝑒 = (𝐻𝑥
𝑒 , 𝐻

𝑦
𝑒 , 𝐻

𝑧
𝑒 ) denote the driving force applied to the pursuer 𝑖 and evader in the 2D 𝑥 − 𝑦 axis, 𝜖𝑝𝑖 and 𝜖𝑒

denote the possible noise, respectively. In addition, (𝐻𝑥 , 𝐻𝑦) or (𝐻𝑥 , 𝐻𝑦 , 𝐻𝑧) is also the action of robots. The direction

and the magnitude of the force are discrete. The stacking of acceleration is caused by force in multiple directions that

make the velocities of robots continuous.

III. Preliminaries

A. Partially Observable Markov Decision Process

Since each pursuer can only observe its own state and environment information within the pursuer detection range,

the problem in this paper can be regarded as partially observable Markov decision process (POMDP), which is an

extension of the Markov process. It is defined by the environment state 𝑆𝑡 , the action space 𝐴𝑡
𝑝 =

[
𝑎𝑡
𝑝1, . . . , 𝑎

𝑡
𝑝𝑁

]
,

where 𝑎𝑡
𝑝𝑖

is the action 𝐻𝑝𝑖 of the pursuer. The observation received by pursuer 𝑖 at time 𝑡 is defined as 𝑜𝑡
𝑝𝑖

. Each

pursuer 𝑖 learns a policy 𝜋𝑝 : 𝑜𝑡
𝑝𝑖
→ 𝐴𝑡

𝑝 which maps each pursuer’s observation to a distribution over its set of actions.

Subsequently, the next states are obtained by the transition function 𝑇 :
[
𝑆𝑡 × 𝑎𝑡

𝑝1 × . . . × 𝑎
𝑡
𝑝𝑁

]
→ 𝑆𝑡 . Each pursuer 𝑖

can obtain rewards 𝑅𝑝 as a function of state and action spaces. The aim of the pursuers is to maximize the expected

discounted returns

𝐽 (𝜋𝑝) = E𝑎𝑝∼𝜋𝑝 ,𝑆∼𝑇

[ ∞∑︁
𝑡=0

𝛾𝑡𝑟 𝑡𝑝𝑖

(
𝑆𝑡 , 𝑎𝑡𝑝𝑖 , . . . , 𝑎

𝑡
𝑝𝑁

)]
(2)

where 𝑟 𝑡
𝑝𝑖

denotes the reward that the pursuer 𝑖 obtains at time 𝑡 and 𝛾 ∈ [0, 1] represents the discount factor acting on

the importance of future rewards.

B. Reinforcement Learning for Pursuit-Evasion Games

In our game, we set up a larger number of pursuers, which means that pursuers are a greater threat to the evader.

Then the evader is lighter than the pursuers, which implies that the evader has better potential mobility optimization.

The pursuers are driven by two capture strategies, one is a random strategy and the other is a pre-trained learning

strategy. The evader does not know the pursuit strategy. The pursuer has only partial observation of the environment.
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The Q-learning algorithm [30], a data-based RL technique, is novelly used as a method to generate better evasion

strategies [20] by identifying possible game patterns in multi-robot games. In this paper, Q-learning is used as the basic

training method. The goal of the learning is to dynamically adjust the action policy 𝜋𝑒 based on the evader’s reward and

penalty information during exploration, so that the evader can obtain greater long-term rewards

𝑅𝑡
𝑒 =

∞∑︁
𝑘=0

𝛾𝑘𝑟 𝑡+𝑘 (3)

At time 𝑡, the evader obtains different long-term rewards according to each action policy. In order to evaluate the

policy 𝜋𝑒, a value function 𝑄(𝑠𝑡 , 𝑎𝑡𝑒) is introduced, including state value function 𝑉 (𝑠𝑡 ) = E𝜋
[
𝑅𝑡
𝑒 |𝑠𝑡

]
and action value

function 𝑉 (𝑎𝑡𝑒) = E𝜋
[
𝑅𝑡
𝑒 |𝑎𝑡𝑒

]
, where 𝑉 (𝑠𝑡 ) indicates that the learning subject is in the state of 𝑆𝑡 and follows the action

policy 𝜋𝑒 and 𝑉 (𝑎𝑡𝑒) refers to the expected long term rewards that can be gained by taking the action 𝑎𝑡𝑒 based on the

state of the policy 𝜋𝑒. In addition, the optimal state-action value function of the evader is denoted as

𝑄∗ (𝑠, 𝑎𝑒) = max
𝜋𝑒
E𝜋𝑒

[
𝑅𝑡
𝑒

]
= E𝜋𝑒

[
𝑟 𝑡 + 𝛾𝑡 max

𝑎𝑡
𝑒

𝑄(𝑠𝑡 , 𝑎𝑡𝑒)
] (4)

By continuously exploring the pursuit-evasion environment and iterating Eq. (4) based on the reward values fed back

from the environment, the evader can derive the optimal strategy 𝜋∗ = arg max𝑎𝑡
𝑒
𝑄∗ (𝑠𝑡 , 𝑎𝑡𝑒). Therefore, the optimal

evasion action chosen by the evader based on the optimal policy at a given time is the one that maximizes the value

function. Moreover, the Q-value is continuously updated during the exploration process in the following way

𝑄(𝑠, 𝑎𝑒) ← 𝑄(𝑠, 𝑎𝑒) + 𝜀𝑡
[
𝑟 𝑡 + 𝛾𝑡 max

𝑎𝑡
𝑒

𝑄(𝑠𝑡 , 𝑎𝑡𝑒) −𝑄(𝑠, 𝑎𝑒)
]

(5)

where 𝜀 denotes the update rate.

In this study, we focus on an escape strategy rather than a pursuit strategy. The goal is to develop a manoeuvrability

escape strategy that is applicable to a multi-robot high-dimensional data environment. Escape means that the evader

will not be collided by the pursuers or will not be confined to a small area from which it cannot escape. For the setup

dealing with manoeuvring actions and high-dimensional data, details will be presented in Sec. IV.

C. Gaussian Process

As a typical model-free approach, RL allows agents to learn and improve its performance based on observation

and reward [31]. However, the high dimensionality of the robot data information makes learning slow and uncertainty

increases. To achieve effective multi-robot RL training, GP for stochasticity and uncertainty is introduced.

GP is the extension of a multivariate Gaussian distribution to infinite number of random variables [32]. It
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can be regarded as a distribution over random functions, with any finite sub-collection of random variables in GP

following a multivariate Gaussian distribution. Specifically, if any subset of random variables
{
𝑔𝑝𝑖 , . . . , 𝑔𝑝𝑁

}
and their

corresponding
{
ℎ(𝑔𝑝1), . . . , ℎ(𝑔𝑝𝑁 )

}
follow the distribution



ℎ(𝑔𝑝1)
...

ℎ(𝑔𝑝𝑁 )


∼ N



©­­­­­­­«
𝑚(𝑔𝑝1)

...

𝑚(𝑔𝑝𝑁 )

ª®®®®®®®¬
,

©­­­­­­­«
𝑘 (𝑔𝑝1, 𝑔𝑝1) . . . 𝑘 (𝑔𝑝1, 𝑔𝑝𝑁 )

...
. . .

...

𝑘 (𝑔𝑝𝑁 , 𝑔𝑝1) . . . 𝑘 (𝑔𝑝𝑁 , 𝑔𝑝𝑁 )

ª®®®®®®®¬


(6)

follows GP, which can be denoted as

ℎ(·) ∼ GP (𝑚(·), 𝑘 (·, ·)) (7)

where 𝑚(·) and 𝑘 (·, ·) are the mean function and covariance function, respectively.

In general, any real-valued function can serve as the mean function for GP. However, a covariance function, also

known as kernel matrix, is usually required to be positive semi-definite. If such requirement is met, GP can be

regarded as a kernel-based probability distribution over function ℎ(·), where the variance 𝑘 (·, ·) encodes the noise of the

environment from uncertainty. Furthermore, the bivariate normal distribution [33] which will be exploited in Sec. IV is

introduced

Lemma 1 Bivariate Normal Distribution: Let N denote the normal distribution, and let 𝑋 and 𝑌 be random vectors

distributed as 
𝑋

𝑌

 ∼ N

©­­­«
A𝑥

A𝑦

ª®®®¬ ,
©­­­«

𝑘𝑖𝑖 𝑘𝑖 𝑗

𝑘 𝑗𝑖 𝑘 𝑗 𝑗

ª®®®¬
 (8)

then we have 𝑋 |𝑌 ∼ N( 𝑋̄, 𝑃) with

𝑋̄ = A𝑥 + 𝑘𝑖 𝑗 𝑘−1
𝑗 𝑗 (𝑌 − A𝑦)

𝑃 = 𝑘𝑖𝑖 − 𝑘𝑖 𝑗 𝑘
−1
𝑗 𝑗 𝑘 𝑗𝑖

(9)

where 𝑃 is the schur complement of 𝑘𝑖𝑖 in the partitioned matrix
(
𝑘𝑖𝑖 𝑘𝑖 𝑗
𝑘 𝑗𝑖 𝑘 𝑗 𝑗

)
.

IV. Methodology
In this section, the overall structure of MERL-GP is first described. Then, the details of the components of MERL-GP

are given, including the manoeuvrability action, the composite reward mechanism, and the high-dimensional data

processing including Gaussian process for stochasticity and uncertainty.
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A. Overall Structure

The overall structure of our method is given in Fig. 2. The historical time series data of all robots are considered

as inputs. Inputs from unknown environments are read by the MERL controller and GP, where they are directly used

as observation in the case of low-dimensional data, and additionally in the case of high-dimensional data, the value

function is updated by passing it through the GP’s state estimator and approximating it. Meanwhile, the rewards from

the GP and MERL controller are embedded in the value function through the composite reward mechanism to obtain a

policy. The escape strategy generated by the manoeuvrability action returns to the robot in the environment. The whole

process is trained in an end-to-end manner with backpropagation. We now discuss the components in MERL-GP.
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Fig. 2 An overall overview of the framework, including the architecture of MERL-GP and the application of
multi-robot pursuit-evasion games.

B. Manoeuvrability Action

As described in Sec. III, according to Eq. (5) the loss function is set as

𝐿 (𝜃) = E
[
𝑄obj −𝑄(𝑠𝑡 , 𝑎𝑡 , 𝜃)

]
(10)

where 𝜃 is a main network parameter. The policy 𝜋𝑒 is parameterised by the parameter 𝜃 of the neural network. By

directly adjusting the parameter 𝜃, it maximizes the objective function

𝑄obj = 𝑟 𝑡 + 𝛾𝑡 max
𝑎𝑡
𝑒

𝑄(𝑠𝑡 , 𝑎𝑡𝑒, 𝜆) (11)

where 𝜆 is an objective network parameter. The main network parameter is updated based on the loss function.

In the training environment, the reward 𝑟 𝑡 obtained by the evader at time 𝑡 contains manoeuvrability action

8



information. Each robot obtains the velocity 𝑣𝑡 of the next step using the velocity 𝑣𝑡+1 of the current step and the

acceleration 𝑎𝑡 . Similarly, each robot obtains the position 𝑔𝑡 of the next step using the position 𝑔𝑡+1 of the current step

and the velocity 𝑣𝑡 . Thus we have the following equation

𝑣𝑡+1 = 𝑣𝑡 + 𝑎𝑡Δ𝑡

𝑔𝑡+1 = 𝑔𝑡 + 𝑣𝑡Δ𝑡
(12)

when Δ𝑡 is small, the robot’s velocity can be approximated as remaining constant throughout Δ𝑡. The robot’s velocity

can be considered to remain unchanged.

After each Δ𝑡 in the training environment, the state information of the evader and all pursuers is updated as shown in

Fig. 2. The POMDP and communication of the pursuers make the position and velocity information of the evader easily

observable by the pursuers during the escape process. Specifically, the state information of the evader being observed is

denoted as 𝑆𝑒 =
[
𝑥𝑒, 𝑦𝑒, 𝑣

𝑥
𝑒 , 𝑣

𝑦
𝑒

]
or 𝑆𝑒 =

[
𝑥𝑒, 𝑦𝑒, 𝑧𝑒, 𝑣

𝑥
𝑒 , 𝑣

𝑦
𝑒 , 𝑣

𝑧
𝑒

]
and the state information of the pursuers observed by

the evader is expressed as 𝑆𝑝𝑖 =

[
𝑥𝑝𝑖 , 𝑦𝑝𝑖 , 𝑣

𝑥
𝑝𝑖
, 𝑣

𝑦

𝑝𝑖

]
or 𝑆𝑝𝑖 =

[
𝑥𝑝𝑖 , 𝑦𝑝𝑖 , 𝑧𝑝𝑖 , 𝑣

𝑥
𝑝𝑖
, 𝑣

𝑦

𝑝𝑖
, 𝑣𝑧

𝑝𝑖

]
. Therefore, when the evader

faces 𝑁 pursuers, the state space is designed as 𝑠 =
[
𝑆𝑒, 𝑆𝑝1, 𝑆𝑝2, . . . , 𝑆𝑝𝑁

]
, where the state information of each ground

robot and air robot is 4-dimension and 6-dimension, respectively. The total number of dimensions of the state space

observed by the ground and aerial robots when one of the 𝑁 pursuers exists within the detection range is 4(𝑁 + 1) and

6(𝑁 + 1), respectively. In addition, the manoeuvrability action space of the evader is defined as

𝐸2𝐷 = {𝐸0, 𝐸1, 𝐸2, 𝐸3, 𝐸4}

𝐸3𝐷 = {𝐸0, 𝐸1, 𝐸2, 𝐸3, 𝐸4, 𝐸5, 𝐸6}
(13)

where 𝐸0, 𝐸1, 𝐸2, 𝐸3, 𝐸4, 𝐸5, 𝐸6 represents the 7 types of actions in the evader’s manoeuvrability action library: no-drive,

forward-drive, backward-drive, left-drive, right-drive, up-drive, and down-drive, respectively. In pursuit-evasion games,

the manoeuvrability action is represented by sparse rewards as 𝑟 𝑡𝑚 = {−𝑐1, 𝑐2, 0}, where 𝑐1, 𝑐2 are two positive values.

More details of the reward allocation will be described in Composite Reward Mechanism.

C. Composite Reward Mechanism

In this paper, we convert the problem of changing the relative position of the evader and pursuers into a problem of

changing the potential power under the potential field generated by the pursuers. The repulsive field is generated by the

pursuers, and the change in potential power of the evader under the potential field of the pursuers is taken as the reward

value for each step. Based on the repulsive potential function in our previous work [34], the repulsive potential function

9



generated by the pursuer in this paper is defined as

𝑈𝑔 (𝜌) =


𝛿

(
1

𝜌
(
𝑔𝑒, 𝑔𝑝𝑖

) − 1
𝜌0

)
, 𝜌

(
𝑔𝑒, 𝑔𝑝𝑖

)
≤ 𝜌0

0, 𝜌
(
𝑔𝑒, 𝑔𝑝𝑖

)
> 𝜌0

(14)

where 𝛿 is a positive potential field coefficient and 𝜌0 denotes the radius of influence of the pursuer 𝑖. The Euclidean

distance between the pursuer 𝑖 and evader is denoted as 𝜌
(
𝑔𝑒, 𝑔𝑝𝑖

)
.

After a training time step in the learning environment, if the relative distance between the evader and pursuer 𝑖

decreases, then the potential power of the evader under the repulsive field generated by the pursuer 𝑖 will increase. The

smaller the relative distance between the evader and pursuer 𝑖, the faster the potential power of the evader changes.

Therefore, after a training time step, if the relative distance between the evader and pursuer decreases, a negative reward

should be given. When the relative distance is smaller, it means that the evader’s state is more critical. Then the case

that causes the relative distance to decrease should be given a greater penalty. Therefore, the reward function for relative

position change is designed as

𝑟 𝑡𝑔 = −
𝑁∑︁
𝑖=1

Δ𝑈𝑔 (𝜌) (15)

where Δ𝑈𝑔 (𝜌) denotes the change in potential power of the evader under the repulsive field generated by the pursuer 𝑖

before and after performing a training time step.

In addition, the relative velocity change between the pursuer 𝑖 and evader at each time step should be considered in

the reward function design. When the relative velocity angle 𝜃𝑟𝑒 of the pursuer 𝑖 in the detection range is smaller and

the relative velocity 𝑣𝑟𝑒 is larger, its threat to the evader is higher. To describe this threat, we propose the concept of

velocity potential field as follows

𝑈𝑣 (𝑔𝑒, 𝑔𝑝𝑖) =


𝜂 |𝑣𝑟𝑒 | cos 𝜃𝑟𝑒, 𝜌

(
𝑔𝑒, 𝑔𝑝𝑖

)
≤ 𝜌0

0, 𝜌
(
𝑔𝑒, 𝑔𝑝𝑖

)
> 𝜌0

(16)

where 𝜂 denotes a coefficient constant and 𝑣𝑟𝑒 = 𝑣𝑒 − 𝑣𝑝𝑖 represents the relative velocity of the pursuer 𝑖 and evader.

The relative velocity angle is expressed as

𝜃𝑟𝑒 = arccos
(
𝑔𝑒 − 𝑔𝑝𝑖

) (
𝑣𝑝𝑖 − 𝑣𝑒

)��𝑔𝑒 − 𝑔𝑝𝑖

�� ��𝑣𝑝𝑖 − 𝑣𝑒�� (17)

The larger the potential field of the evader, the faster the pursuer approaches the evader. Similarly, a penalty is given
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to the evader for increased potential power in the relative velocity potential field. This reward function is set as

𝑟 𝑡𝑣 = −
𝑁∑︁
𝑖=1

Δ𝑈𝑣 (𝑔𝑒, 𝑔𝑝𝑖) (18)

where Δ𝑈𝑣 (𝑔𝑒, 𝑔𝑝𝑖) denotes the change in potential power of the evader under the relative velocity potential field

generated by the pursuer 𝑖 before and after performing a training time step.

Moreover, relying only on relative position reward and relative velocity reward does not give a reasonable reward

value for the change in the evader’s security state. Usually, when the pursuers are applied to learned pursuit strategy,

the pursuers’ formation influences the evader’s escape strategy. The geometric centre of the pursuit formation is

𝑔𝑐𝑒 =
1
𝑁

∑𝑁
𝑖=1 𝑔𝑝𝑖 and the pursuit centre change reward is defined as

𝑟 𝑡𝑐𝑒 = Δ𝜌(𝑔𝑒, 𝑔𝑐𝑒) (19)

where Δ𝜌(𝑔𝑒, 𝑔𝑐𝑒) denotes the change in the evader’s distance from the center point of the pursuit formation before

and after performing a training time step. Manoeuvrability actions away from the centre of the pursuit formation are

positively rewarded.

Besides, the evader is considered to be surrounded when the positional relationship between the evader and pursuers

simultaneously satisfies

𝑥𝑒 ∈
[
min

{
𝑥𝑝1, . . . , 𝑥𝑝𝑁

}
,max

{
𝑥𝑝1, . . . , 𝑥𝑝𝑁

}]
𝑦𝑒 ∈

[
min

{
𝑦𝑝1, . . . , 𝑦𝑝𝑁

}
,max

{
𝑦𝑝1, . . . , 𝑦𝑝𝑁

}]
𝑧𝑒 ∈

[
min

{
𝑧𝑝1, . . . , 𝑧𝑝𝑁

}
,max

{
𝑧𝑝1, . . . , 𝑧𝑝𝑁

}] (20)

instead, when the evader is not under the surrounding, it is given a reward 𝑟 𝑡𝑠𝑢 = {𝑤,−𝑤}, where 𝑤 is a hyperparameter.

Therefore, the reward function of escape process for the evader is designed as

𝑟 𝑡 = 𝜔1𝑟
𝑡
𝑔 + 𝜔2𝑟

𝑡
𝑣 + 𝜔3𝑟

𝑡
𝑚 + 𝜔4𝑟

𝑡
𝑐𝑒 + 𝜔5𝑟

𝑡
𝑠𝑢 + 𝑑 (21)

where 𝜔 is the weight coefficient and 𝑑 denotes the bias.

Remark 1: Manoeuvrability action and composite reward mechanism are mainly designed for the evader, while the

design of rewards for the pursuers including learned pursuit strategy and random pursuit strategy will be presented in

Sec. V.
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D. Gaussian Process for Stochasticity and Uncertainty

A solution that utilizes the characteristics of GP to deal with multi-robot and uncertainty problems is presented in

this section. Based on the preliminary GP functions provided in Sec. III, we introduce an approximation for the value

function and estimation with Monte Carlo.

1. Approximation via Gaussian Process

In general, the discounted reward accumulated from time 𝑡 given a policy 𝜋𝑝 is a random process, and can be written

as

𝑅𝑡
𝑝 = 𝛾𝑅𝑡+1

𝑝 + 𝑟 𝑡+1𝑝 (22)

Due to the stochasticity in state transitions, for the state-action pair (𝑠𝑡 , 𝑎𝑡 ), the accumulated discounted reward can

be decomposed into two parts: its mean 𝑄(𝑠𝑡 , 𝑎𝑡
𝑝𝑖
), and random zero-mean residual Δ𝑄(𝑠𝑡 , 𝑎𝑡

𝑝𝑖
). Let us assume

𝑅𝑡
𝑝 = 𝑄(𝑠𝑡 , 𝑎𝑡𝑝𝑖) + Δ𝑄(𝑠𝑡 , 𝑎𝑡𝑝𝑖) (23)

which employs a Bayesian methodology that allows us to consider the value 𝑄(·) as a stochastic entity. Due to our

subjective uncertainty about the transition distribution, we define 𝑄(𝑠𝑡 , 𝑎𝑡
𝑝𝑖
) and Δ𝑄(𝑠𝑡 , 𝑎𝑡

𝑝𝑖
) as the extrinsic and

intrinsic uncertainty in the stochastic process, respectively. For a more detailed discussion of intrinsic and extrinsic

uncertainty refer to Ref. [35]. Substituting Eq. (22) into (23), we have

𝑟 𝑡+1𝑝 = 𝑄(𝑠𝑡 , 𝑎𝑡𝑝𝑖) − 𝛾𝑄(𝑠𝑡+1, 𝑎𝑡+1𝑝𝑖 ) +M
(
(𝑠𝑡 , 𝑎𝑡𝑝𝑖), (𝑠𝑡+1, 𝑎𝑡+1𝑝𝑖 )

)
(24)

with

M
(
(𝑠𝑡 , 𝑎𝑡𝑝𝑖), (𝑠𝑡+1, 𝑎𝑡+1𝑝𝑖 )

)
= Δ𝑄(𝑠𝑡 , 𝑎𝑡𝑝𝑖) − 𝛾Δ𝑄(𝑠𝑡+1, 𝑎𝑡+1𝑝𝑖 ) (25)
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The finite-dimensional random process r𝑡𝑝 , Q𝑡 ,M𝑡 and the 𝑡 × (𝑡 + 1) matrix K 𝑡 can be expressed as

r𝑡𝑝 =
[
𝑟0
𝑝 , . . . , 𝑟

𝑡
𝑝

]𝑇
Q𝑡 =

[
𝑄(𝑠0, 𝑎0), . . . , 𝑄(𝑠𝑡 , 𝑎𝑡 )

]𝑇
M𝑡 =

[
M

(
(𝑠0, 𝑎0), (𝑠1, 𝑎1)

)
, . . . ,M

(
(𝑠𝑡−1, 𝑎𝑡−1), (𝑠𝑡 , 𝑎𝑡 )

)]𝑇

K 𝑡 =



1 −𝛾 0 . . . 0

0 1 −𝛾 . . . 0
... . . .

...

0 0 . . . 1 −𝛾



(26)

therefore, Eq. (24) can be written concisely as

r𝑡𝑝 = K 𝑡+1Q𝑡 +M𝑡 (27)

Moreover, we impose a gaussian prior over every element in Q𝑡 , i.e., a prior distribution Q𝑡 ∼ GP(0, 𝑘𝑖 𝑗 ), where 0

is a vector of zero and 𝑘𝑖 𝑗 = 𝑘
(
(𝑠𝑖 , 𝑎𝑖), (𝑠 𝑗 , 𝑎 𝑗 )

)
. Similarly, its corresponding random process for Δ𝑄(𝑠𝑡 , 𝑎𝑡 ) is defined

as

ΔQ𝑡 =
[
Δ𝑄(𝑠0, 𝑎0), . . . ,Δ𝑄(𝑠𝑡 , 𝑎𝑡 )

]𝑇 ∼ GP(0, 𝜎2I) (28)

where 𝜎 is the covariance parameter and I is the unit matrix. Given that 𝑄 and Δ𝑄 are both gaussian, and the discounted

accumulated reward 𝑅𝑡
𝑝 should follow GP. Using the standard results for joint gaussian distributed random variables

[36], we obtain the joint distribution of r𝑡𝑝 and 𝑄(𝑠𝑡 , 𝑎𝑡 )


r𝑡𝑝

𝑄(𝑠𝑡 , 𝑎𝑡 )

 ∼ N

©­­­«

0

0

ª®®®¬ ,
©­­­«
K 𝑡 𝑘 (K 𝑡 )𝑇 + 𝜎2K 𝑡 (K 𝑡 )𝑇 K 𝑡L𝑡 (𝑠𝑡 , 𝑎𝑡 )

L𝑡 (𝑠𝑡 , 𝑎𝑡 )𝑇 (K 𝑡 )𝑇 𝑘 ((𝑠𝑡 , 𝑎𝑡 ), (𝑠𝑡 , 𝑎𝑡 ))

ª®®®¬
 (29)

with

L𝑡 (𝑠𝑡 , 𝑎𝑡 ) =
[
𝑘

(
(𝑠0, 𝑎0), (𝑠𝑡 , 𝑎𝑡 )

)
, . . . , 𝑘

(
(𝑠𝑡 , 𝑎𝑡 ), (𝑠𝑡 , 𝑎𝑡 )

) ]
(30)

In order to derive the posterior distribution of 𝑄(𝑠𝑡 , 𝑎𝑡 ) conditioned on the observed sequence of reward r𝑡𝑝 , based

on Lemma 1 we have

𝑄(𝑠𝑡 , 𝑎𝑡 ) |r𝑡𝑝 ∼ N
(
𝑄̄(𝑠𝑡 , 𝑎𝑡 ), 𝑐𝑜𝑣

(
(𝑠𝑡 , 𝑎𝑡 ), (𝑠𝑡 , 𝑎𝑡 )

) )
(31)
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with the mean and covariance as

𝑄̄(𝑠𝑡 , 𝑎𝑡 ) = (L𝑡 )𝑇
[
(K 𝑡 )𝑇

(
K 𝑡 𝑘 (K 𝑡 )𝑇 + 𝜎2K 𝑡 (K 𝑡 )𝑇

)−1
r𝑡𝑝

]
𝑐𝑜𝑣

(
(𝑠𝑡 , 𝑎𝑡 ), (𝑠𝑡 , 𝑎𝑡 )

)
= 𝑘𝑡𝑡 − (L𝑡 )𝑇

[
(K 𝑡 )𝑇

(
K 𝑡 𝑘 (K 𝑡 )𝑇 + 𝜎2K 𝑡 (K 𝑡 )𝑇

)−1
K 𝑡

]
L𝑡

(32)

where 𝑄̄(𝑠𝑡 , 𝑎𝑡 ) denotes the desired trajectory at time 𝑡 if the action 𝑎𝑡 is chosen.

Remark 2: Given the current state information 𝑠𝑡 , 𝑐𝑜𝑣 ((𝑠𝑡 , 𝑎𝑡 ), (𝑠𝑡 , 𝑎𝑡 )) reflects the pursuers’ confidence in

estimating the Q-value. Notably, Eqs. (31) and (32) present the state information in an implicit way. Obviously, 𝑠𝑡

contains state information that is potentially relevant among the pursuers. Moreover, Eqs. (31) and (32) are the key

to update the estimated Q-value based on state, action and reward. Therefore, GP also establishes an important link

between state information and decision quality.

2. Estimation with Monte Carlo

The validity of our model can be confirmed by performing a whitening transformation on Eq. (27). By Eq. (23),

E𝜋𝑝
[Δ𝑄] = 0, so we have E𝜋𝑝

[
M

(
(𝑠𝑡 , 𝑎𝑡 ), (𝑠𝑡+1, 𝑎𝑡+1)

) ]
= 0. SinceM𝑡 = K 𝑡ΔQ𝑡 , we haveM𝑡 ∼ N(0, Σ𝑡 ) with

Σ𝑡 = 𝜎2K 𝑡 (K 𝑡 )𝑇

= 𝜎2



1 + 𝛾2 −𝛾 0 . . . 0

−𝛾 1 + 𝛾2 −𝛾 . . . 0
... . . .

...

0 0 . . . −𝛾 1 + 𝛾2



(33)

Since the noise covariance matrixΣ𝑡 is positive definite, there exists a square matrixH 𝑡 satisfying (H 𝑡 )𝑇H 𝑡 = (Σ𝑡 )−1.

From Eq. (27), we have H 𝑡r𝑡𝑝 = H 𝑡K 𝑡+1Q𝑡 + H 𝑡M𝑡 . The transformed noise term H 𝑡M𝑡 has a covariance matrix

with H 𝑡Σ𝑡 (H 𝑡 )𝑇 = H 𝑡
[
(H 𝑡 )𝑇H 𝑡

]−1 (H 𝑡 )𝑇 = I. Therefore, the transformation H 𝑡 whitens the noise, where it is

written by

H 𝑡 = (K 𝑡+1)−1 =



1 𝛾 𝛾2 . . . 𝛾𝑡

0 1 𝛾 . . . 𝛾𝑡−1

... . . .
...

0 0 . . . 0 1


(34)

The transformed model isH 𝑡r𝑡𝑝 = Q𝑡 +H 𝑡M𝑡 with white gaussian noiseH 𝑡M𝑡 ∼ N(0, 𝜎2I). In addition, we use

the Monte Carlo sample of discounted reward as the target for GP regression to learn the value function, which is the
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generative model. This has the advantage of allowing us to update the parameters of the posterior mean and covariance

online.

V. Simulation

A. Simulation Setting

Multi-robot pursuit-evasion game tasks in two different space including aerial and ground robots are designed to

validate the effectiveness of MERL and MERL-GP. Random pursuit strategy and learned pursuit strategy imposed on

the pursuers are used to evaluate the evader’s escape strategy in the face of general and complex situations.

For all the tasks, the ideal situation is that each robot obtains observation and action information from all other robots

to complete the plan better. However, due to communication distance limitations, robots cannot obtain information

from all other robots in a realistic environment. Moreover, the communication limitations become more drastic as one

moves from a small number of robots to a swarm of robots. Therefore, the method for getting more information from

other robots is through communication enhanced network [29]. The map is set in a limited four sides area or cubic

area of [−1500, 1500] × [−1500, 1500] or [−1500, 1500] × [−1500, 1500] × [−1500, 1500] and the initial positions

of pursuers and evader are randomly generated. Besides, the action space is discrete, and each robot can control unit

acceleration or deceleration in the 𝑥 and 𝑦 axis. These scenarios are implemented based on the dynamics in Sec. II,

where the robots are able to move around with a double-integrator dynamics model.

In the simulations, MERL is compared with MADDPG [18], Transfer [37], Min-Max Q-learning [20], and MERL-GP.

The states of all robots are required by the first algorithm MADDPG during training to construct its critic network. The

second algorithm Transfer ignores the temporal relationship among the robots. The third algorithm Min-Max Q-learning

transforms the high-dimensional state space into a low-dimensional manifold that is applied to the pursuit-evasion

games. The fourth algorithm MERL-GP is another version of MERL with GP that is used to validate its effectiveness in

the face of high-dimensional data from more robots. The parameters of the training process, the network, and MERL

are given in Table 1.

B. Pursuit-Evasion Games for Ground Robots

1. Task Setting

In this task, a number of pursuit strategies are pre-defined to serve as the baseline method for initial training,

evaluation, and comparison. The basic strategies include a random pursuit strategy and a learned pursuit strategy, as

explained below

• Random pursuit strategy: Each pursuer is independently controlled by a high-gain proportional pursuit controller

targeting the evader’s location. The cooperation among pursuers is random and fuzzy.
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Table 1 Parameters of environment and training

Parameters Value Parameters Value

Robot mass (pursuer/evader) 3.8/1.9 kg Max control force 1 N
Gravitational acceleration 9.8 m/s2 Time step 0.5 s
Side length 3000 m Learning rate 0.0001
Robot radius 0.15 m Max gradient normalization 2
Detection range 750 m Discount factor 0.99
Communication range 1500 m Max episode 10000
Escape range 50 m Batch size 64
Evader air resistance coefficient 0.127 N/m/s Exploration factor range 0.05-0.5
Pursuer air resistance coefficient 0.1 N/m/s Exploration factor decay 0.004

• Learned pursuit strategy: In training, the evader is driven by the MERL strategy. The composite reward function

for this task is defined as follows:

𝑅𝑡
𝑝𝑖 =

𝑁∑︁
𝑖=1

(
𝑅𝑡
𝑑𝑖𝑠𝑡 + 𝑅

𝑡
𝑐𝑜𝑙𝑙 + 𝛼𝑅

𝑡
𝑐𝑎𝑝

)
+ 𝛽𝑅𝑠𝑢𝑐𝑐

𝑅𝑡
𝑑𝑖𝑠𝑡 = −𝜌

(
𝑔𝑝𝑖 , 𝑔𝑒

)
𝑅𝑡
𝑐𝑜𝑙𝑙 =


0, 𝜌

(
𝑔𝑝𝑖 , 𝑔𝑝 𝑗

)
> 𝑟𝑝𝑖 + 𝑟𝑝 𝑗

− 2, 𝜌
(
𝑔𝑝𝑖 , 𝑔𝑝 𝑗

)
≤ 𝑟𝑝𝑖 + 𝑟𝑝 𝑗

𝑅𝑡
𝑐𝑎𝑝 =


0, 𝜌

(
𝑔𝑝𝑖 , 𝑔𝑒

)
> 𝑐

10, 𝜌
(
𝑔𝑝𝑖 , 𝑔𝑒

)
≤ 𝑐

𝑅𝑠𝑢𝑐𝑐 =


20, num𝑒 = 0

0, num𝑒 ≠ 0

(35)

where 𝑅𝑑𝑖𝑠𝑡 is the distance reward, 𝑅𝑐𝑜𝑙𝑙 is the collision reward, 𝑟𝑝 and 𝑟𝑒 represent the radius of the pursuer and

evader, respectively, 𝑅𝑐𝑎𝑝 is the reward obtained by pursuer if it catches the evader, and 𝑅𝑠𝑢𝑐𝑐 denotes the reward

obtained by all pursuers if all evaders are captured. num𝑒 represents the number of uncaptured evaders. 𝛼 and 𝛽

are the coefficients, that the larger 𝛼, the more the robot pays attention to individual rewards and the larger 𝛽, the

more the robot pays attention to swarm rewards.

2. Simulation Results

The learning curves of all the methods in terms of mean rewards are shown in Fig. 3. All five methods are trained

with the pursuers driven by the aforementioned random pursuit strategy. When the number of robots is three, there is

little difference in performance among all the methods. The reason for this is that the relationships among the robots are
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simpler, and all the methods can learn a satisfactory strategy regardless of whether they have a graph convolutional layer

or contain the GP. Nevertheless, it is interesting to note that MERL-GP can be rewarded more than all baseline methods

when training is complete. However, MERL-GP converges slower than MERL and Min-Max Q-learning without GP.

It can be concluded that MERL-GP is more difficult to be trained because it has a more complex mechanism. It is

obviously not suitable for when the amount of data is small.

When the number of robots increases, MERL-GP complex interaction and manoeuvrability processing is better.

As shown in Fig. 3(b), the performance of MADDPG and Transfer is severely degraded, while MERL-GP performs

significantly better than the other methods. Compared with other methods, MERL-GP has faster convergence and

more stable performance. Specifically, MERL-GP converges to a steady state after 1000 update episodes, while the

other methods converge to a steady state after 2000 update episodes. The results show that MERL-GP can handle

complex interactions among a large number of robots. In addition, it can use GP to cope with high-dimensional state

spaces. In addition, the negative impact of MERL-GP on training difficulty is much smaller than the positive impact of

GP in high-dimensional data processing. In contrast, without the help of composite reward mechanism and GP, other

easy-to-train methods perform poorly in complex environments where the number of robots increases. In addition to

these basic analyses, there are a number of phenomena worth discussing:

• Except for MERL-GP, MADDPG converges the fastest but converges to a minimum value. This phenomenon may

be due to the limitations of MADDPG. Specifically, MADDPG does not possess a recurrent network and cannot

handle partially observable environments and history-dependent decisions. As a result, in partially observable

environments with a large number of robots, complex interactions among robots cannot be handled and MADDPG

is at a local optimum. In contrast, Transfer’s results perform slightly better than MADDPG both with a small

number of robots and with a much larger number.

• The results of MERL perform better Min-Max Q-learning and have a smaller variance of the curve, and the

combined effect is better for a small number of robots, because the MERL composite reward mechanism helps the

evader to better find the optimal escape strategy.

• The results of MERL-GP show better performance when the number of robots increases compared to the other

methods, which means that GP is effective for high dimensional data.

The learned models are saved and evaluated after each trial. We test our escape strategy with both random pursuit

strategy and the learned pursuit strategy. Each model is evaluated for 100 evaluation episodes. The evaluation episodes

use the same environment as the training episodes. The difference is that detection noise on the action is excluded.

Escape performance is evaluated by success rate and average step. We define that an event is successful in the escape

task if the escape is completed before 400 steps, when the condition is

(i) when the maximum speed of the evader is less than the maximum speed of the pursuer, the distance between the

evader and each pursuer is more than 150 m or the distance is more than 50 m at 400 steps.
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Fig. 3 Training rewards in pursuit-evasion games for ground robots. The solid lines and the shaded areas show
the average values and standard deviations in each episode over 10 independent trails.

(ii) when the maximum speed of the evader is greater than or equal to the maximum speed of the pursuer, the real-time

distance between the evader and each pursuer is more than the initial distance.

The success rate is the percentage of successful episodes in evaluation episodes. The average step is the average

number of steps before the escape completes in an episode. The success rate in this study primarily reflects the

effectiveness of the escape strategy. The lower average step indicates a more efficient escape strategy. The average

success rate and average step of the learning model over the 100 evaluated episodes are shown in Figs. 4(a) and 4(b),

respectively.

From the low success rate shown in Fig. 4(a), we find that MADDPG is unable to learn a better strategy for the

escape task. The robot that learns based on local observation only is prone to fall into local optimum. Transfer, Min-Max

Q-learning, and our methods succeed in obtaining good escape strategies such that the success rate of completing the

task is high. Specifically, due to the ability of the first two methods to observe the full extent of the environment, a high

success rate and a low average number of steps are obtained despite the fact that the pursuer is allowed to communicate

with the information of other pursuers. However, their learning rate is still low compared to our methods. In addition,

we also observe lower performance when confronted with a learned pursuit strategy compared to a random pursuit

strategy. This is due to the fact that the learned pursuit strategy is trained to actively capture evaders. However, although

our escape strategy is only trained to handle the random pursuit strategy, it still obtains better results when confronted

with the learned pursuit strategy, which implies that our escape strategy has good generalization ability.

In order to better illustrate the pursuit-evasion game process for ground robots, the dynamic evolution of the two

escape behaviours in conditions (i) and (ii) is shown in Fig. 5. As shown in Fig. 5, the cases where the evader is

captured contain different numbers of ground robots in the initial training stage. When the training is completed, the

cases where the evader successfully escapes are shown in Fig. 6. In Figs. 6(a) and 6(b), the learned pursuit strategy is
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Fig. 4 Average success rate and step of the random and learned pursuit strategy under five methods.

applied and the evader satisfies escape condition (i). Although the maximum speed of the evader is less than that of the

pursuers, the evader escapes from the pursuer through its manoeuvring actions. In Figs. 6(c) and 6(d), the random

pursuit strategy is applied and the evader satisfies escape condition (ii). In this case, the evader faces the threat of more

pursuers and completes the escape task by finding the optimal escape route.

C. Pursuit-Evasion Games for Aerial Robots

1. Task Setting

In this task, similar to that of the ground robots, learned pursuit strategy or random pursuit strategy remains

embedded in the pursuers. The difference is that the 3D space significantly increases the difficulty of training the aerial

robot’s strategy due to the growth in data dimensions. The conditions for success in the escape task are the same as

those set when testing the ground robots.
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Fig. 5 Illustration of the initial training failure cases in pursuit-evasion games for ground robots: a) learned
pursuit strategy, and b,c) random pursuit strategy.

-1000 -800 -600 -400 -200 0 200

-500

-400

-300

-200

-100

0

100

200

Evader

Pursuer1

Pursuer2

Pursuer3

x (m)

y
 (

m
)

(a)

0 200 400 600 800 1000 1200

0

100

200

300

400

500

600

700

800

900

Evader

Pursuer1

Pursuer2

Pursuer3

Pursuer4

x (m)

y
 (

m
)

(b)

-600 -400 -200 0 200 400 600

-600

-400

-200

0

200

400

600

Evader

Pursuer1

Pursuer2

Pursuer3

Pursuer4

Pursuer5

Pursuer6

y
 (

m
)

x (m)

(c)

-800 -600 -400 -200 0 200 400 600

-600

-400

-200

0

200

400

600

Evader

Pursuer1

Pursuer2

Pursuer3

Pursuer4

Pursuer5

Pursuer6

Pursuer7

Pursuer8

y
 (

m
)

x (m)

(d)

Fig. 6 Illustration of the training end cases in pursuit-evasion games for ground robots: a,b) learned pursuit
strategy and satisfying condition (i), and c,d) random pursuit strategy and satisfying condition (ii).

2. Simulation Results

The learning curves of all methods for the average reward are shown in Fig. 7(a). All five methods are trained with

the pursuers driven by the random pursuit strategy. When the number of robots is three, all methods equally have similar

performance. The reason for this is that the low dimensional computation due to the small number of robots in both 2D
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and 3D space makes the relationship among robots relatively simple. Interestingly, MERL can be rewarded more than

all baseline methods when training is complete. The reason for this is the simpler structure of MERL-GP compared to

MERL-GP when faced with a small number of robots.

When the number of robots increases, MERL-GP complex interactions and GP are better at handling high dimensional

data. As shown in Fig. 7(b), the performance of the other methods degrades severely, while the performance of

MERL-GP is significantly due to the other methods. MERL-GP reaches stability after 5000 update episodes. The

results show that MERL-GP can handle complex interactions among a large number of robots. Besides, it can use

manoeuvrability enhanced to complete the evader escape task facing multiple pursuers with the random pursuit strategy.

In addition, the negative impact of the complex structure of MERL-GP on training difficulty is much smaller than the

positive impact of GP in handling high-dimensional data. In contrast, without the help of manoeuvrability enhanced

strategy and GP, the other methods that are easy to train have difficulty in completing the evader escape task or falling

into local optima in complex environments with an increasing number of robots.
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Fig. 7 Training rewards in pursuit-evasion games for ground robots. The solid lines and the shaded areas show
the average values and standard deviations in each episode over 10 independent trails.

In addition to the data during training, the evaluation results of 100 independent simulations in Table 2 show similar

results as in Fig. 7. The values of three metrics, including success rate, rewards, and steps, for the five comparison

methods in the four cases in Table 2. The mean values are the statistical results of running 100 times of the same method

on the same test scenario.

Moreover, t-test [38] is used to statistically evaluate the validity of the method. Based on the mean value, standard

deviation, and the sample data for 100 tests, we calculated the t-test values for MERL-GP and the other methods. ’+’,

’=’ and ’-’ indicate that the index values obtained by the method of this paper are better than the results of the other

methods in the two-tailed t-test with a significance level of 5%, respectively.

As shown in Table 2, our method obtains 39 optimal measurements in all test scenarios. There is no significant
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Table 2 Evaluation results of pursuit-evasion games for aerial robots

Method Metrics
n=3 n=6

success rate reward step success rate reward step

MADDPG
mean 96.2 91.2683 105.4622 94.6 24.0226 115.5886
t-test 4.4397 (+) 14.1612 (+) -11.4851 (+) 5.3371 (+) 20.9971 (+) -18.3032 (+)

Transfer
mean 97 101.1851 110.8635 96.4 39.3404 104.5791
t-test 3.9285 (+) 13.306 (+) -14.3362 (+) 4.3168 (+) 8.2048 (+) -8.5796 (+)

Min-Max Q-learning
mean 100 113.2219 93.1925 99.4 36.1168 101.4617
t-test 𝜙 (=) 8.0942 (+) -2.4896 (=) 1.7355 (=) 10.3761 (+) -8.9537 (+)

MERL
mean 100 118.7360 94.2656 99.6 48.9934 91.5230
t-test 𝜙 (=) 1.2723 (=) -1.3531 (=) 1.4156 (=) 3.3614 (+) -4.0268 (+)

MERL-GP
mean 100 117.9058 95.3385 100 64.8348 86.2669
t-test - - - - - -

n=12 n=20

success rate reward step success rate reward step

MADDPG
mean 87.6 -0.2695 129.9101 45.2 -127.9634 298.4788
t-test 11.3032 (+) 24.6172 (+) -26.5581 (+) 24.5968 (+) 75.8487 (+) -61.2081 (+)

Transfer
mean 93.8 12.9636 114.1817 75.6 -4.1059 138.9427
t-test 7.3541 (+) 19.4651 (+) -20.8732 (+) 12.6911 (+) 23.6260 (+) -3.9305 (+)

Min-Max Q-learning
mean 99 19.5638 99.6901 78.4 -11.4854 192.6153
t-test 1.6094 (+) 13.4344 (+) -24.1560 (+) 11.5598 (+) 17.5810 (+) -18.8610 (+)

MERL
mean 99.1 47.6252 72.8084 96 43.7897 164.3268
t-test 1.3913 (=) 1.9328 (+) 2.3601 (=) 4.5598 (+) 7.3414 (+) -12.8101 (+)

MERL-GP
mean 100 52.4208 75.0396 99.6 49.2294 128.6292
t-test - - - - - -

difference among the performance of other methods and our methods in a small number of robot scenarios. With a

larger number of robots, MERL-GP can obtain more rewards and higher efficiency than other methods, which means

that MERL-GP is better at handling scenarios with a large number of robots. In addition, the performance gap between

MERL and MERL-GP suggests that using MERL is more suitable for a small number of robots, whereas MERL-GP is

more suitable for a larger number of robots.

In order to better describe the pursuit-evasion game process for aerial robots, the dynamic evolution of the two

escape behaviours in conditions (i) and (ii) is shown in Fig. 8. As shown in Fig. 8, the cases where the evader is

captured contain different numbers of aerial robots in the initial training stage. When the training is completed, the

cases where the evader successfully escapes are shown in Fig. 9. In Figs. 9(a) and 9(b), the learned pursuit strategy is

applied and the evader satisfies escape condition (i). Although the maximum speed of the evader is less than that of the

pursuers, the evader escapes from the pursuer through its manoeuvring actions. In Figs. 9(c) and 9(d), the random

pursuit strategy is applied and the evader satisfies escape condition (ii).
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Fig. 8 Illustration of the initial training failure cases in pursuit-evasion games for aerial robots: a) learned
pursuit strategy, and b,c) random pursuit strategy.
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Fig. 9 Illustration of the training end cases in pursuit-evasion games for aerial robots: a,b) learned pursuit
strategy and satisfying condition (i), and c,d) random pursuit strategy and satisfying condition (ii).

In addition, for example, the time-varying relative distances and time-varying velocities of the evader and the three

pursuers in scenario a) of Fig. 9 are shown in Fig. 10. In Fig. 10(a), the red dashed line indicates the minimum distance

between the evader and each pursuer. The maximum velocity bound of the evader is indicated by the dark dashed line in

Fig. 10(b), which shows that the maximum velocity of the evader is always smaller than the maximum velocity of the
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pursuers to satisfy the escape condition (i).
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Fig. 10 Time-varying relative distances and time-varying velocities of the evader to the three pursuers in
scenario a) of Fig. 9.

D. Ablation Models

In this section, we briefly analyze the ablation models, including MERL and MERL-GP. The results for the ground

robot escape task in pursuit-evasion games are shown in the previous section (refer to Figs. 3 and 4). The results for the

aerial robot escape task are shown in the previous section (refer to Fig. 7 and Table 2). Furthermore, we also perform

additional ablation simulations of the pursuers applied by learned pursuit strategy in the aerial robot escape task to

assess the effectiveness of our methods (refer to Fig. 11).
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Fig. 11 Convergence episodes of escape task in pursuit-evasion games.

It can be observed that MERL performs when the scenario contains a small number of robots due to MERL-GP both

for ground and aerial robots. However, as the number of robots increases, the performance of MERL-GP is superior

compared to MERL. Moreover, we note that MERL-GP improves the performance of the aerial robot escape task better
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than the ground robot escape task. This phenomenon suggests that the complex structure of the GP reduces processing

efficiency in the face of low-dimensional data. However, the efficiency improvement in the face of high-dimensional

data is much higher than the reduction of processing efficiency by the complex structure. Therefore, it can be concluded

that GP helps to improve the performance of our method.

As shown in Fig. 11, the number of episodes required for convergence of MERL, MERL-GP and the other methods

under three robots is basically the same. As the number of robots increases, the increase in the number of episodes is

greater for MERL than for MERL-GP. MERL-GP converges faster than MERL. While MADDPG and Transfer fall into

local optimums although the number of rounds to converge is smaller. The results show that GP can be designed to

accelerate convergence effectively.

Table 3 Model evaluation indicators

Method Number MAE RMSE

MADDPG

n=3 4.28 7.32
n=6 5.63 7.94
n=12 6.37 8.87
n=20 7.98 10.02

Transfer

n=3 1.04 1.36
n=6 1.27 1.69
n=12 1.56 2.12
n=20 2.35 3.83

Min-Max Q-learning

n=3 0.79 1.03
n=6 0.87 1.25
n=12 0.91 1.34
n=20 1.55 2.84

MERL

n=3 0.54 0.86
n=6 0.57 0.92
n=12 0.63 0.98
n=20 1.02 1.43

MERL-GP

n=3 0.62 0.96
n=6 0.64 0.98
n=12 0.72 1.01
n=20 0.92 1.36

We compare the performance of different methods using the Root Mean Squared Error (RMSE) and the Mean

Absolute Error (MAE). The RMSE and MAE values of the different methods with different number of robots are

compared and the better model is the one that produce the lowest RMSE and MAE values. The results show that MERL

and MERL-GP have lower values compared to the other three methods in Table 3. In MERL, MAE and RMSE are

smaller when the number of robots is less. Whereas, the MERL-GP has smaller values with more number of robots.

Most importantly, all the results show that MERL-GP can further improve the performance of more robots in escape

task. These advantages manifest as a considerable increase in rewards (refer to Figs. 3 and 7 and Table 2) or faster
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convergence (refer to Figs. 3(b) and 11). This means that GP is necessary for better and more stable results when

dealing with high dimensional data.

E. Robustness of MERL and MERL-GP

In order to validate the robustness and generalization of MERL and MERL-GP, all methods are applied to different

scenarios with a number of aerial robots ranging from 3 to 20. Scenarios with each number of robots are tested for 100

escape tasks to get the average escape rate. Specifically, the robot initial positions of each task are randomly generated

and the error bars reflect the accuracy of the test.

As shown in Fig. 12, the initial escape rates of each method is high, but the escape rates of MADDPG, Transfer, and

Min-Max Q-learning in the escape task decay significantly as the number of robots increases. MERL starts to decay

significantly after the number of robots is increased to 15, and the escape rate of the tasks for MERL-GP decays more

slowly compared to the other methods.
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Fig. 12 Escape rate of the aerial robot escape task when the pursuers are applied to the learned pursuit strategy.

VI. Experiment

A. Experiment Setting

In addition, we also demonstrate the effectiveness of the MERL and MERL-GP algorithm applied to multiple ground

robots in a semi-physical environment Gazebo and Rviz. All processing is done in realtime, and by using MERL or

MERL-GP, the ground robot pursuer team pursues the evader. All experiments are run using Gazebo and Rviz, on an

Intel i7-13700K CPU with 32GB of RAM, and an NVIDIA RTX 3070Ti GPU.

The ground robots complete their tasks in a simulated environment with an enclosure 3000 × 3000 m. The starting

position is random. In contrast to the simulation, this section uses real ground robots in the simulation, considering their
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size and steering to construct a map of the environment using Rviz. The dynamics model of the real ground robot can

be found in Ref. [39].

B. Experiment Results

As shown in Fig. 13, the motion trajectories of the ground robots fade with time varying through the overhead view,

where the red circle is the evader and the blue square is the pursuer. MERL is applied to the number of robots 4 and 5 as

shown in Figs. 13(a) and 13(b). MERL-GP is applied to the number of robots 7 and 9 as shown in Figs. 13(c) and 13(d).

The applicability of our methods in the physical world is verified through several successful experiments. Although our

simulations also include gravity, air friction, and the complete dynamics of the robot, some behaviours are difficult to

quantify in the simulations including robot torque, lossy drive, and ground friction.

(a) 4 robots (b) 5 robots

(c) 7 robots (d) 9 robots

Fig. 13 Video stills illustrating cases when the number of ground robots is 4, 5, 7, and 9, respectively.

C. Robustness to Noise

In this section, we investigate the robustness of the system to noise in a semi-physical experiment. We observe

two main sources of noise: the noise added to the evader, and the noise generated by the pursuer when measuring the
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position of the evader. For each case, we added different levels of noise (refer to Ref. [40]) to test the effect of noise on

the escape task.

The results at 4 robots in the random initial condition are shown in Fig. 14. The additional noise on the trajectories

comes from unmodelled dynamics and communication delays. The results show that the ground robot remains stable

relative to the desired trajectory despite being subjected to persistent noise, demonstrating the robustness of our method

in semi-physical experiments.
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Fig. 14 An example of trajectory offsets with added noise: a) the motion trajectories of the evader and pursuers,
and b) the offset distance relative to the desired trajectory.

VII. Conclusion
In this paper, MERL and MERL-GP are proposed to obtain high probability escape strategies for the evader

in pursuit-evasion scenarios, overcoming the sparse reward problem and local optima, and addressing the difficulty

of solving and training on high-dimensional data in a system containing stochasticity and uncertainty. Specifically,

manoeuvrability action provides more escape strategies. Composite reward mechanism overcomes the sparse reward

and local optima problems. Gaussian process approximation solves the Q-function and allows an accurate online update

of the parameters of the posterior mean and covariance. These methods improve the training efficiency and speed up the

convergence process. Our methods are evaluated by simulations and experiments in tasks for ground and aerial robots.

The results show that our methods outperform several popular methods and have better adaptability.
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