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Abstract—This paper considers the problem that Grey Wolf
Optimizer (GWO) has some defects in solving trajectory opti-
mization problems. To solve this problem, this paper proposes
the improved GWO algorithm based on GWO by the idea of
linear differential decrement and dynamic exponential weighted
average. Compared with other algorithms, this algorithm has
more flexibility in position updating and finds the global optimal
solution effectively. Finally, simulation results demonstrate the
superiority of the improved GWO algorithm in terms of search
accuracy and running time.

Index Terms—Grey wolf optimizer, trajectory optimization,
linear differential decrement, dynamic exponentially weighted
average

I. INTRODUCTION

When confronted with various optimization challenges, re-
searchers frequently opt for optimization algorithms to seek
the best possible solution for a given problem. In contrast,
bionic algorithms rely on intuitive or empirical principles,
offering feasible solutions to problems at an acceptable cost
(such as computational time or memory usage). However,
these algorithms don’t ensure an optimal solution; instead,
they provide practical outcomes that meet the criteria within
acceptable computational constraints. GWO is a bionic intelli-
gent optimization algorithm [1]. This algorithm simulates the
predation strategy and hierarchy of grey wolves in nature.
GWO has been successfully applied to many engineering
optimization problems [2]. Several variations of GWO have
emerged, aiming to circumvent local optima and expedite
convergence by altering the fundamental mechanism of the
original GWO algorithm. [3] introduced mGWO, incorporat-
ing a nonlinear control parameter strategy to achieve a bal-
anced exploration-exploitation approach within GWO. While
inheriting the movement strategy from GWO, mGWO aims
to mitigate the risk of getting stuck in local optima and
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experiencing premature convergence. In a separate study by
[4], the Quasi-Oppositional based Learning (Q-OBL) theory
was integrated into the conventional GWO, resulting in the
QOGWO variant, aiming to enhance its performance. [5]
proposed EEGWO, modifying the position updating mecha-
nism of the algorithm to address its limitations. Nevertheless,
concerns regarding trapping in local optima and premature
convergence persisted despite these adjustments. Addressing
the algorithm’s persisting issues, [6] introduced ROL-GWO,
where a modified parameter C was employed to augment
the exploration capabilities of the algorithm. However, due
to the structure of GWO and the characteristics of the bionic
algorithm [7], GWO can ultimately only generate near-optimal
solutions. As a result, it is easy to fall into a local optimum
during its iterative process and has the disadvantages of poor
exploitation capability and inflexible update strategies. To
address these drawbacks, this paper proposes a combined im-
proved GWO, called Linear Differential Dynamical Weighted
GWO (LDDWGWO).

Linear differential decrement strategy (LDD) is a mathemat-
ical method used in recent years to explore new algorithms
[8]. LDD enables the variable selection of parameters in
GWO, with curvature changes in the initial and terminal
phases leading to large changes in future update positions.
Exponentially weighted averaging accelerates the efficiency of
algorithm iteration [9]. Inspired by [10], [11], this paper pro-
poses Dynamic Exponentially Weighted Averaging (DEWA)
on this basis, which improves the inflexibility of the original
GWO update to increase the diversity of solutions, while the
convergence speed is improved.

The aim of this paper is to improve GWO by combining
LDD and DEWA to produce solutions with flexible location
updates and to reduce the likelihood of solutions falling into
local optima.

(i) LDD serves the purpose of dynamically updating pa-
rameters within GWO, while DEWA operates on updating
individual positions. DEWA’s role is crucial in augmenting
solution diversity, aiding in escaping local optima and steering
the optimization process towards the global optimum.

(i) When employing LDDWGWO in path planning prob-
lems susceptible to getting trapped in local optima, compar-
ative evaluations against other optimization algorithms reveal
distinctions in mean value, best value, p-value, convergence
curve, and runtime performance.



II. PRELIMINARIES AND PROBLEM DESCRIPTION
A. Problem description

The problem of global optimal of the optimization algorithm
is studied. This paper introduces and establishes the following
definitions:

Finding X which optimizes f(X)

subject to:

s,

where n represents the count of inequality constraints while
q stands for the number of equation constraints. The variable
X denotes the solution vector, with d representing the dimen-
sionality of the variables. Additionally, [b; and ub; signify the
lower and upper bounds, respectively, of the variables.

However, due to the nature of GWQO’s update mechanism
and meta-heuristic algorithms, GWO updates are inflexible
and ultimately only near-optimal solutions are created. So its
process easily converges to a local optimum, thereby reducing
the diversity of understanding and halting its exploration [12].

Despite its strong optimization capabilities compared to
other optimization algorithms, GWO still has a small probabil-
ity of global non-convergence. We now describe the problem
to be solved in this paper. GWO is improved by combining
LDD and DEWA to produce solutions with flexible location
updates and to reduce the likelihood of solutions falling into
local optima.

B. Model of GWO

Within GWO, the algorithm mimics the predatory behavior
and hierarchical structure observed in grey wolves in nature.
In this context, o spearheads the predatory actions, /3 assists
in decision-making, J handles specific action arrangements,
while w follows the directives of the first three, encircling and
ultimately executing the predatory action to secure the prey.

In GWO, when addressing an optimization problem, the
population comprises n grey wolf individuals navigating a D-
dimensional search space. Each grey wolf’s position, denoted
as X; = (X;1,Xia, -+, Xip), represents their location in this
multi-dimensional space. Within this population, « signifies
the current best individual, S represents the second-best, §
denotes the third-best, while the rest are designated as w.
The prey’s position aligns with the optimal solution of the
optimization problem. GWO process unfolds as follows: an
initial group of grey wolves is randomly generated across the
search space. The fitness evaluation of the top three individu-
als, «, 3, and 9, serves as the benchmark for identifying the
prey’s location (optimal solution). Subsequently, the positions
of the next generation of grey wolves are computed based
on these top individuals’ locations, driving the optimization
process forward. Refer to Fig. 1 for an illustrative depiction
of this enclosure.

GWO has observation mechanism and hunting mechanism.
In observation mechanism the grey wolf population must first
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Fig. 1. Diagram of GWO enclosing strategy. Suppose the prey position is
(z«, y«) and the grey wolf position is (z,y). At A= (1,0) and C' = (1,1),
the grey wolf will move to (z« — x, y«) according to the formula based on
the prey position, so the enclosing effect will be produced when the vectors
A and C take different values.

take encirclement action on its prey. The distance between
individuals and prey must be determined in the optimal search
process of GWO, and we can get

Di(t) = C - X.(t) — Xi(t)] 2
Xi(t+1) = X.(t) — A- D;(t) 3)
A=2-a-71—a (4)
C=2-r (5)

where D;(t) is the individual’s distance from i and X.(t)
at time t(1 < t < ). { represents the number of iterations
undergone. The notation X, (t) represents the position vector
of the prey at time ¢, while X, (¢) denotes the position vector of
an individual grey wolf at the same time point. The coefficients
A and C are involved in the calculations. a decreases linearly
from 2 to 0 with the number of iterations and r is a random
number between [0, 1].

2
a=2—

ot (6)

tmax
where t,,,x 1S the max number of iterations. This is a typical
linear decrement strategy.

In the hunting mechanism, for the other wolves in the
population, the position of prey based on the position of the
top three grey wolves «, 3 and § individuals, therefore

D, = |Cl « Xa _Xi|

Dy = |Cz - Xp — Xi @)
Ds =103 - X5 — Xi

X =Xo — Al D,

Xio = Xp — AsDg (8)
Xiz = X5 — AsDs



then the position that grey wolf ¢ will move to can be
calculated from Eq. (9)
Xi1(t) + Xio(t) + Xis(2)
3 ©))
Although GWO has the advantages of fewer control param-
eters and a certain degree of avoidance of falling into local
optimal, GWO also has certain drawbacks in solving trajec-
tory optimization problems. When GWO randomly initializes
individuals, the path points generated are haphazard and
disorderly, resulting in a relatively low fitness of individuals.
Because the distance control parameter a is linearly decrement,
the exploitation capability is insufficient. When the position
is updated, GWO uses an average calculation based on the
top three individuals in terms of fitness value, which leads to
an inflexible position update strategy and makes it difficult
to find the global optimal solution by stepping out of the
local optimum 100% of the time in some optimization search
processes.

Xit+1) =

III. A COMBINED IMPROVED GWO ALGORITHM

The original GWO converges slowly and readily yields a
locally optimal solution. We propose LDDWGWO algorithm
combining a linear differential decrement strategy with a dy-
namic exponentially weighted average. LDDWGWO increases
the unpredictability of updating search agent positions and
the speed of iterative convergence, allowing it to reach every
corner of the search space in as short a time as possible.

A. Linear differential decrement strategy

As the GWO progresses through iterations, the value of
parameter a gradually diminishes, resulting in a gradual slow-
down in the search velocity. Consequently, GWO exhibits
improved local search prowess while its capacity for global
exploration weakens. From Eq. (6), the slope is constant,
so the change in search speed always remains at the same
level. When the initial iterations fail to yield superior points,
the accumulation of subsequent iterations coupled with the
swift decline in search velocity often culminate in converging
towards a local optimum towards the algorithm’s conclusion.
Based on the classical linear decrement strategy for a, we
introduce differential equations to construct a new decrement
strategy, then we have

da 2.2
_— = 10
TR (19)
2 t
2-2
/ da = —— Tdr (11)
a tr2nax 0
2
a=2—t2—-t2 (12)

max

It can be seen from Eq. (12) that a and ¢ are still negatively
correlated and that a is a quadratic function of ¢. Fig. 2
shows that a changes slowly during the initial iterations, which
is conducive to finding a local optimum that satisfies the
conditions during the initial iterations. a changes faster as

Later slope changes quickly

tm{u‘

Fig. 2. Plot of iteration curves under classical linear decrement and linear
differential decrement strategies. In the case of 100 iterations, a initially
changes slowly, searching for a local optimum that satisfies the conditions.
Later changes are faster, and after finding the local optimum is able to
converge quickly to approximate the global optimum.

it approaches the maximum number of iterations, and can
converge quickly to approximate the global optimum after
finding the local optimum, improving the efficiency of the
operation.

B. Dynamic exponentially weighted average

In order to overcome the shortcomings of inflexible lo-
cation update and slow convergence in GWO, inspired by
[10], [11], we construct a dynamic exponentially weighted
average (DEWA) location update strategy. DEWA intervention
threshold with the following update method

Yi(t+1) = pYi(t) + (1 — p)X,(t +1) (13)

where Y;(t+ 1) represents the mean value at time ¢+ 1. Y;(0)
is equal to 0. p is the adaptively adjustable weight, which
generally ranges from (0, 1). To improve the accuracy of the
exponentially weighted average, a correction can be made by
the correction formula

Yi(t+1)

Zle+ 1) =1

(14)

where Z;(t + 1) is the deviation-corrected value. The next
moment individual position is dynamically adjusted according
to the fitness value of the optimal three individuals, with the
following update formula

15)

(16)



PaXi1(t) + ppXia(t) + w5 Xis(t)
Py ’
|Xi1(t) — Xlg(t)| >0
Xi1(t) + Xia(t) + Xis(2)
3 9
| X (t) — Xis(t)| <o

Xit+1)= (17)

where o is the threshold value. ¢ is the dynamic weighted
intervention scale factor. ¢, ¢g, s is the fitness value of
«, 3, 0 individuals. The algorithm’s merit-seeking capability
is further enhanced as the position is continuously updated.
Algorithm 1 presents the overall process for LDDWGWO.

Algorithm 1 LDDWGWO algorithm
1: Initialize the population of whales X;(i =1,2,--- ,n)
2: Initialize the dynamic weighted intervention scale factor
¢ and a random number r

3: Calculate the fitness of each search agent

4: while t < do

5:  for each search agent do

6: Update a with Eq. (12)

7: Update A, C, o

8: Compare the fitness of each search agent and filter
out the top three best individuals X, Xz, X;

9: if |Xi1(t) — Xig(t)‘ < o then

10 For each search agent in the population, update its

position with Eq. (9)

11: else

12: Update its position with Eq. (17)

13: end if

14: Adaptive adjustment weight p and modify individual
position with Eq. (14)

15: Check if any search agent goes beyond the search
space and amend it

16: Calculate the fitness value of each search agent

17:  end for
18: t+—t+1
19: end while
20: return

IV. SIMULATION
A. Basic setting

To verify the effectiveness and superiority of LDDWGWO,
we combine it with the classical artificial potential field (APF)
algorithm and apply it to the path planning problem. The local
optimum problem is the most typical problem for the APF
algorithm in Refs. [13], [14]. In addition, APF can provide
a 3D simulation scenario. This therefore provides a good
validation for reducing the possibility of the solution falling
into a local optimum. We have carried out extensive simulation
tests and report the results of this part.

The configuration of the simulation experiments is described
below: in a 100km x 100km x 20km x — y — z space, the
basic setup of the UAV and obstacle positions is shown in
Fig. 3, where the obstacle influence radius X € [4,18] and

Y € [5,14]. A quadrotor UAV model is used in this paper.
The UAV has a minimum speed of 50 meters per second,
a minimum turning radius of 2 kilometers and a minimum
flight altitude of 1 kilometer. In the multi-UAV path planning
problem, the minimum distance between UAVs is [50, 50, 20]7
meters. Based on the simulation scenario, the initial position
of UAVs, the location and range of influence of the obstacles,
and the location and orientation of the targets are configured.
The following assumptions are imposed in order to address
the above problem.

Assumption 1. Do not consider mutual collisions between
UAVs.

Assumption 2. The continuous solution space of infinite states
maps to a finite discrete set.

Assumption 3. All UAV models are considered as particles.

To evaluate the performance of LDDWGWO comprehen-
sively, a mixed static and dynamic obstacle scenario is created
with different types of fitness functions, including unimodal
functions (f1 — fs) and multimodal functions (f7 — fo) [15],
[16] in Table I. The performance of the proposed LDDWGWO
is tested on 10 fitness benchmark functions and compares with
the original GWO [1] and 2 other optimization algorithms.
This incorporates both particle swarm optimization (PSO) [17]
and genetic algorithms (GA) [18].

z/km

y/km

Starting area

Static obstacle ¢+ UAV and path

Target area @ Dynamic obstacle A Moving direction

Fig. 3. Schematic diagram of the basic setup of UAVs and obstacles positions

The number of iterations for each algorithm is 100 and the
dimension is 30. Four evaluation metrics such as the mean
value, the best one, the std and the p-value are calculated as
shown in Table II.

B. Convergence analysis

As can be seen from Table II, most of the results of
LDDWGWO outperformed those of other similar products.
The results of the convergence curves for the four algorithms
for the nine benchmark functions are shown in Fig. 4. The



TABLE I
DESCRIPTION OF BENCHMARK FUNCTIONS

Function Dim  Iteration = Equation
Sphere 30 100 J1(X) T X2
Sumsquares 30 100 fo(X) =30 iX?
Step 30 100 f3(X) =31, [Xs + 0.5
Quartic 30 100 fa(X) =30 ;iX} + random[0, 1)
Rosenbrock 30 100 F5(X) = S H100(X 41 — X2) 4 (X; — 1)?]
Schwefel 222 30 100 fo(X) = > |1Xs| + 1T, 1X)
Rastrigin 30 100 fr(X) =31 | [X2 — 10 cos(2mX;) + 10]
2
Griewank 30 100 fs(X)=>71", gﬁ o cos(}\%) +1
Ackley 30 100 fo(X) = —20exp <70.2, D X?) —exp (1 Y7 | cos(2mX;)) +20 + e
TABLE II TABLE III

COMPARISON OF RESULTS (MEAN, BEST, STD, p-VALUE) FOR UNIMODAL
AND MULTIMODAL BENCHMARK FUNCTIONS

Function  Metrics  PSO GA GWO LDDWGWO

Mean 9.98E—01 1.67E+01 9.53E—-03  3.04E—04

Best 1.51E—01 9.18E+00  2.63E—03  3.39E—05

f Std 1.16E+00  5.27E+00  2.55E—02 5.28E—04
p-value  3.02E—11 7.27E—-08 9.33E—05

Mean 528E—03 3.28E+00 4.38E—02 5.26E—05

Best 353E—-04 257E-01 3.69E—04 4.92E—08

f2 Std 729E—03  9.43E+00  6.53E—02  7.46E—05
p-value  3.78E—08 5.03E—05 3.97E—09

Mean 827E—-01 2.07E+00  6.52E—03 1.42E—03

Best 7.63E—02 9.13E—01 542E—04 2.31E—04

f3 Std 328E+00  831E+00  9.75E—03  3.96E—03
p-value  3.55E—11 5.68E—08 7.31E—04

Mean 3.07E—-02 9.21E—-01 298E—03 2.53E—03

i Best 7.73E—03 237E—-01 3.82E—05 5.23E—05

4 Std 6.63E—02  3.78E+00  6.43E—03  4.05E—03
p-value  9.42E—14 3.57E—07 6.24E—11

Mean 524E—-01 3.15E+00  2.13E—02 2.31E—03

Best 6.73E—03 2.21E—01 7.98E—04 9.25E—05

f5 Std 7.84E—01  7.25E+00  5.65E—02 4.73E—03
p-value  920E—12 5.32E—-07 2.97E—18

Mean 324E—-03 7.21E-01 445E-02 1.56E—03

) Best 5776E—04 9.74E—02 8.35E—04 9.96E—05

fo Std 221E—02 3.33E+00  6.29E—02 3.97E—03
p-value  3.08E—04 5.62E—06 6.48E—11

Mean 357E-02 6.81E—01 428E—02 1.93E—04

Best 8.73E—04 7.36E—02 2.04E—04 2.09E—07

fr Std 542E—02 9.17E—-01 5.15E—02 5.18E—04
p-value  483E—09 837E—11 1.32E—-05

Mean 423E—-02 443E-01 291E-03 7.26E—05

Best 876E—04 6.92E—02 7.85E—05 2.21E—07

fs Std 7.73E—02  8.37E—01 8.51E—03 9.97E—05
p-value  4.82E—04 8.36E—11 9.27E-21

Mean 8.13E—02 3.58E—01 348E—03 9.73E—04

Best 447E—03 8.65E—02 9.89E—05 7.56E—05

fo Std 232E-01 6.68E—01 8.31E—03 2.21E—03
p-value 329E—14 8.86E—08 6.94E—24

results show that the LDDWGWO algorithm outperforms the
other optimization algorithms.

C. Running time comparison

Furthermore, in evaluating the algorithms’ performance, we
conducted comparative analyses of the running times between
LDDWGWO and other optimization algorithms. Table III
displays the average duration needed to execute each iteration
for every algorithm under assessment. Each algorithm was
still iterated 100 times in dimensions 20, 30, 50 and 100.
each experiment was repeated 10 times to obtain the average

COMPARISON OF AVERAGE RUNNING TIME OF EACH ITERATION FOR
DIFFERENT ALGORITHMS

Dimension  PSO GA GWO LDDWGWO
20 0.0378  0.0321  0.0215 0.0223
30 0.0392  0.0306 0.0284  0.0258
50 0.0839 0.1278 0.0735  0.0678
100 0.3196  0.4425 0.2981 0.2832

running time for each iteration as shown in Table III. The
results show that the average running time of LDDWGWO is
comparable to the average running time of the original GWO
when the dimension is 20. Furthermore, as the dimension
increases, it is clear that LDDWGWO outperforms the other
optimization algorithms in terms of the average running time
per iteration.

V. CONCLUSION

GWO has certain drawbacks in solving trajectory optimiza-
tion problems. When randomly initializing individuals, the
path points generated are haphazard and disorderly, resulting
in a relatively low degree of individual adaptation. In addition,
the position update strategy is inflexible, so it is difficult to go
beyond the local optimum to find the global optimum solution
in some of the optimization search processes. To reduce the
above problems, this paper combines GWO with a linear
differential decrement strategy and dynamic exponentially
weighted averaging. Specifically, a LDDWGWO algorithm is
proposed. It uses linear differentiation to update the parameters
of GWO, thus improving the average fitness value of the initial
population. In addition, a dynamic exponentially weighted av-
eraging method is proposed in order to increase the flexibility
of the location update, in the hope of jumping out of the local
optimum. In this paper, LDDWGWO is applied to APF that
are prone to local optima, and LDDWGWO is evaluated by
using nine benchmark fitness functions with different shapes.
In contrast to other standard optimization algorithms and the
original GWO, LDDWGWO exhibits superior performance
concerning both search accuracy and runtime efficiency, as
revealed by comparative analyses.
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