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Abstract
In this paper, we aim to design a general framework for the Pursuit-Evasion (PE) game of multiple UAVs.
Based on the distance between the pursuers and the evader, the whole pursuit-evasion process is decoupled
into a seeking stage and a herding stage. A formation control method is proposed to make sure that the
pursuers can find and drive the non-cooperative evaders along a desired trajectory towards the designated
target while maintaining a preset formation. In the meantime, an adaptive potential function is designed
to achieve collision avoidance to both obstacles and other agents in the formation. The mian contribution
is that it combines formation control and collision avoidance in the problem of indirect herding, which is
rarely addressed before. Also, the convergence and effectiveness of the designed controller for trajectory
tracking and formation maintenance is proved and verified in the paper. Simulation results in two and three
dimensional space show that the proposed framework achieves the goal of coordinated herding and collision
avoidance in a pursuit-evasion scenario under uncertainties and external disturbances.
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1 INTRODUCTION

In recent years, the applications of unmanned aerial vehicles (UAVs) in the military and civil fields have expanded and demand
continues to grow. In these applications, with the increase in mission complexity and reliability requirements, a single UAV is
limited by a narrow range of movement, a small operational area and a weak attack capability when performing complicated
missions or exploring complex environments1. Therefore, the cooperation and coordination of multiple agents play an important
role in complex tasks that are difficult for a single agent2. To enable these applications, various cooperative capabilities and
consensus control methods for multi-agent systems need to be developed3, including information consensus4,5, formation
control6,7,8, containmnet control9 and formation-containment control10 etc.

Currently, abundant studies have been conducted in the realm of formation control, addressing the problem of consensus
control and formation tracking. Considering the intrinsic model uncertainties and disturbances existing in the multi-agent
systems, robust control techniques are developed and adopted in formation control. In recent years, some backstepping-based
adaptive control methods have been developed for uncertain linear multi-agent systems. In Mahfouz et al.11, a backstepping PID
controller is used to resolve the controversy of formation rearrangement for a troop of cooperative vertical take-off and landing
UAVs in a decentralized way that guarantees stability and robustness of the complete formation of the troop. An adaptive fuzzy
backstepping controller is proposed by Zhou et al.12 to solve the formation control problem of under-actuated unmanned surface
vehicle in the presence of unknown model nonlinearities and actuator saturation. A novel nonlinear robust close formation
controller was developed by Zhang et al.13, which is based on the command filtered backstepping technique. A new robust finite-
time backstepping method is proposed by Yang et al.14 to solve the practical output tracking problem for a class of nonlinear
systems with nonstrict-feedback form. Kartal et al.15 propose a nonlinear backstepping control method to track desired optimal
velocity trajectories for players with generalized Newtonian dynamics.
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Apart from such a collaboration mode among multiple agents, there exists another non-cooperative pattern where two opposing
groups are considered in the system. For example, the presence of adversarial agents with the aim of causing physical damage
to safety-critical infrastructure, can lead to catastrophic consequences. This necessitates protective solutions by either direct
physical interception or indirect herding. Such a non-collaborative relationship can be found in a PE game16, where either
evading or pursuing strategies are determined for agents in a predator-prey scenario using the differential game theory17,18.
Different from traditional pursuit-evasion problems, in indirect herding problems, the influencing or defending agents must
pursue non-cooperative roaming agents while also escorting it to a desired location through an inter-agent interaction19. The
herding method in Pierson et al.20 utilize a circular-arc formation of herders to influence the nonlinear dynamics of the herd based
on a potential-field approach, and designs a point-offset controller to guide the herd close to a specified location. Licitra et al.21

discuss herding using a switched-system approach, where the herders/pursuers chase evaders/attackers sequentially by switching
among them so that certain dwell-time conditions are satisfied to guarantee stability of the resulting trajectories. Deptula et al.22

use approximate dynamic programming to obtain sub-optimal control policies for the herder to chase a target agent to a goal
location. A game-theoretic formulation is used in Nardi et al.23 to address the herding problem by constructing a virtual barrier,
but the computational complexity from the discretization of the state and control-action space limits its applicability. In the
above mentioned research, the herders are either in a fixed geometry or move freely in the space, where explicit integration with
formation tracking and control of the defenders are rarely discussed.

For practical multi-UAV missions, a large number of UAVs can be tasked in environments riddled with obstacles and wind
disturbance. Besides, possible collisions within the formation24 can affect the movement of each agent. To address the issue of
flight safety in critical missions that require high agility in complex and unknown environments, a number of methods have been
developed recently, such as model predictive control method25, which takes the collision-free constraints between the agents
as additional relative state constraints in the online optimization problems. Artificial potential fields generate large repelling
force when the agents show potential of colliding with obstacles26. Another method is based on control barrier functions27,
where the collision-free formation tracking problem with velocity and input-constraints was considered. However, most of the
aforementioned approaches to collision or obstacle avoidance have not been widely used in a herding scenario.

Based on the above discussions on related works, it can be summarized that much endeavors have been made in formation
control and indirect herding. However, there are still technical challenges remained to be addressed. First, a formation maintenance
and tracking problem need to be solved in a herding scenario, where the pursuer need to seek and drive the evaders to the target
along a desired trajectory. Second, when pursuing UAVs are in a complex environment and cooperate in a close formation,
avoidance of interagent collisions and obstacles need to be considered at the same time to guarantee their flight safety. Besides,
most current work only assume a particular form of potential field to model the repulsive motion of the attackers with respect to
the defenders. To address the above issues, this paper proposes a novel PE framework to solve the problem of safe formation
control of quadrotor UAVs in a complex environment. Compared with previous related works28,29,30, the main work and
contributions of this paper are summarized as follows.

(i) A novel two-staged PE framework is built in this paper, which is decoupled into a seeking stage and a herding stage. A
herding formation is proposed to make sure that the pursuers can drive the evaders to the desired target. Compared with previous
research, this two-staged framework simplifies the controller design and improves the feasibility of the formation algorithm.

(ii) To solve the problem of non-cooperative formation maintenance in the herding phase, an output-feedback formation
maintenance controller based on backstepping is proposed. This controller enables the pursuer to maintain a preset formation
while herding the evaders along the desired trajectory. The convergence and effectiveness of the controller is verified in the paper.

(iii) To ensure the safety of the pursuing UAVs during the herding process, a collision avoidance trajectory tracking controller
is proposed with the integration of artificial potential functions. We propose to increase the transition area between attractive and
repulsive forces by means of a dynamic adjustment factor, allowing both formation aggregation and collision avoidance to be
maintained in the formation. Through simulation it is shown that this controller not only achieves the goal of herding formation
and collision avoidance at the same time, but also some robustness under uncertainties and external disturbances.

The rest of the paper is organised as follows, Section 2 describes the problems and provides an overview of the PE framework.
Section 3 develops a formation maintenance controller for evaders and pursuers and also analyses the controller stability. Section
4 describes the collision avoidance trajectory tracking control law for each UAV, and designs the collision avoidance potential
function with the stability analysis of the controller. Simulations are performed in Section 5 to verify the effectiveness of the
proposed framework. Finally, conclusions are given in Section 6.
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2 AN OVERVIEW OF THE PURSUIT-EVASION FRAMEWORK

2.1 Problem description

As illustrated in Fig. 1, the PE problem for two groups of non-cooperative quadrotor UAVs with pursuers and evaders in a
Euclidean n-space with some obstacles is considered in this paper. The ultimate goal of the pursuers is to seek and drive the
evaders to a desired target along a collision-free trajectory. The whole herding process is divided into two stages: (1) Seeking
stage; (2) Herding stage. Recall that the pursuers are required to get closer to the evaders before the pursuers drive the evaders to
the target area.

(1) Seeking stage: when the evaders are outside the capture region, the pursuers need to get closer to the evaders and
maintaining the pursuing orientation.

(2) Herding stage: the pursuers change their formation in order to drive the evaders to the target area.
In each stage, the pursuers are assumed to circulate information to each other. In other words, as long as one pursuer is in contact

with the evader, the other pursuers have access to this information. We use Rn with some obstacles O = {O1, O2, . . . , Ok, . . .}
represents the Euclidean n-space. g = [x, y, z]T ∈ R3 and Θ = [ϕ, θ,ψ]T ∈ R3 represent the position vector and attitude vector
of the UAV in the inertial system, respectively. The lift in flight of the UAV and its three moments in the direction of attitude
angle are provided by the motors on the rotor blades and can be expressed as τ = [τ1, τ2, τ3]T . F = [0, 0, T]T denotes the total lift
of the UAV. U = [T , τ1, τ2, τ3]T is denoted as the control input to the UAV and its angular velocity in the inertial system is set to
ω = [w, q, r]T .

Herding stageSeeking stage

Pursuer Evader ObstacleTarget areaDesired trajectory

F I G U R E 1 Overview of the pursuit-evasion process.

2.2 Model of the quadcopter UAV

The rotation matrix of the UAV between the inertial and airframe coordinate systems with respect to its angular velocity is

ω =

 w
q
r

 =

 1 0 – sin θ
0 cosϕ cos θ sinϕ

0 – sinϕ cos θ cosϕ

 ϕ̇θ̇
ψ̇

 (1)

From classical dynamics analysis we can get mV̇ = –mgξ1 + u1Rξ1, where m denotes the mass of the UAV, g is the acceleration
of gravity, and ξ1 = [0, 0, 1]T , u1 denotes the sum of the lift forces generated by the four motors, that is u1 =

∑4
i=1 Fi = Kt

∑4
i=1 Ω

2
i ,

where Kt represents the lift coefficient of the UAV, Ωi denotes the speed of the i-th motor. From the momentum moment theorem,
the dynamics equation of the UAV is Jω̇ = –ω × Jω + τ , where J denotes the positive definite inertia matrix of the system,
–ω × Jω represents its gyroscopic effect and τ is the control input moment, which is expressed in the form

τ =

 τ1

τ2

τ3

 =

 lKt(Ω2
2 – Ω2

4)
lKt(Ω2

1 – Ω2
3)

Kd(Ω2
2 + Ω2

4 – Ω2
3 – Ω2

1)

 (2)
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where l denotes the distance from the centre of the rotor to the crosshead, Kd denotes the torque factor of the system. The system
dynamics model can be divided into a position motion subsystem and an attitude motion subsystem. ẍ

ÿ
z̈

 =

 0
0
g

 –
1
m

 cosϕ sin θ cosψ + sinϕ sinψ

cosϕ sin θ sinψ – sinϕ cosψ

cosϕ cos θ

T (3)

 ẇ
q̇
ṙ

 =


(Jy–Jz)

Jx
qr + Jr

Jx
Ωgq + 1

Jx
τ1

(Jz–Jx)
Jy

wr + Jr
Jy
Ωgw + 1

Jy
τ2

(Jx–Jy)
Jz

qw + 1
Jz
τ3

 (4)

where Ωg = Ω1 –Ω2 +Ω3 –Ω4 and the sum of the rotor inertia of each rotor of the UAV is Jr and Jx, Jy and Jz are the components
of the rotational inertia Jr. When the quadrotor is flying at low altitude at a small speed, the angular velocity under the system is
approximately equal to the Euler angular velocity, thus  ϕ̇θ̇

ψ̇

 =

 w
q
r

 (5)

Therefore, the formation problem for a group of quadrotor UAVs is studied. In the group, each UAV is modeled by the
following dynamics 

ẍ = –ux
T
m

ÿ = –uy
T
m

z̈ = g – cosϕ cos θ
T
m

ϕ̈ = θ̇ψ̇
(

Jy – Jz

Jx

)
+

1
Jx
τ1 +

Jr

Jx
Ωgθ̇

θ̈ = ϕ̇ψ̇
(

Jz – Jx

Jy

)
+

1
Jy
τ2 +

Jr

Jy
Ωgϕ̇

ψ̈ = θ̇ϕ̇
(

Jx – Jy

Jz

)
+

1
Jz
τ3

(6)

where ux = cosϕ sin θ cosψ + sinϕ sinψ and uy = cosϕ sin θ sinψ – sinϕ cosψ.

2.3 The pursuit-evasion framework

According to the problem description, this paper proposes a PE framework illustrated in Fig. 2, which is composed of two stages.
At the seeking stage, the pursuers try to approach the evaders in order to enclose them. At the herding stage, the formation control
is decoupled into a formation-maintenance problem and a trajectory tracking problem, combining collision-free algorithms,
which will be introduced in the following sections.

2.3.1 At the seeking stage

We set the control input matrix of the UAV system to U = [T , τ1, τ2, τ3]T = [U1, U2, U3, U4]T . In practice, the evaders may
deviate from their optimal trajectories of the pursuers driving them. This requires the pursuers to approach the evaders in order
to enclose them. We use cs

p, vs
p and us

p and cs
e, vs

e and us
e to denote the virtual position (formation center), velocity and input

acceleration vector of the formation at the seeking stage, where the superscript "s" stands for "seeking" and the subscripts "p"
and "e" stand for the "pursuer" and "evader" respectively. Then, during the initial seeking phase the aim of the pursuers is to
move as a desired open, rigid formation centered at cs

p. The formation of the pursuers seeks to: (i) get closer to the evader swarm
(i.e., ∥cs

p(t) – cs
e(t)∥ < Es

trans, for all t > Ts
p, where Es

trans is a user defined parameter, and Ts
p is some finite time at which the seeking

phase would be completed), and (ii) maintain the orientation vs
p of the formation toward the evader swarm (see Fig. 3). We first
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Collision Free

Collision free

F I G U R E 2 A brief illustration of the PE framework.

generate desired trajectories for each pursuer assuming rigid-body motion of the desired formation, and then design finite-time
convergent controllers to track the desired trajectories.

In order to generate the desired trajectories that can be tracked by the pursuers, we first consider that the centre cs
p is controlled

by the damped double integrator dynamics, and that the pursuer’s motion is governed by:

ċs
p = vs

p, v̇s
p = us

p – CD∥vs
p∥vs

p

∥us
p∥ ≤ ūs

p

(7)

where CD > 0 is the constant drag coefficient, and the acceleration us
p is bounded by ūs

p as given in (7). The dynamics in
(7) takes into account the air drag experienced by the agents modeled as a quadratic function of the velocity. Note also that
the damped double integrator model inherently poses a speed bound on each agent under a limited acceleration control, i.e.,
∥vs

p∥ < v̄s
p =

√
ūs

p

CD
and does not require an explicit constraint on the velocity of UAVs while designing bounded controllers, as in

earlier literature31,32. To design a controller for pursuers in the presence of obstacles, a δ-agent strategy is used32, where a virtual
agent δ is located at the projection point of a pursuer’s position on the boundary around the obstacle. The δ-agent moves along
the boundary and its velocity is equal to the projection of the pursuer’s velocity on the unit tangent vector to the boundary at the
current location of the δ-agent. The avoidance control for obstacle Ok is activated only when the δ-agent is within a distance of
Ro

p from the formation center using the blending function σs
p characterized by Ro

p. Therefore, the control input of the pursuers is
designed as:

us
p = Ωūs1

p

[∑
k∈Io

σs
pus

px
s
p – ξ1

(
cs

p – cs
e

)]
+ Ωūs2

p

[
CD∥vs

p∥vs
p – ξ2

(
vs

p – vs
e

)]
(8)

where ξ1, ξ2 > 0 are control gains, xs
p =

[
cs

p, vs
p, cs

δ , vs
δ

]T
and cs

δ, vs
δ are the position and velocity of the virtual δ-agent on the

obstacle Ok corresponding to the pursuers’ formation. The summation term in (8) is to avoid collision with obstacles. A saturation
function31,32 Ωū: R2 → R2 is defined as: Ωū(g) = min

(
∥g∥, ū

)
g∥g∥–1, where ū > 0 is the saturation limit. To ensure that the

desired formation moves with a bounded velocity, i.e., ∥vs
p∥ < v̄s

p ≜
√

ūs1
p +ūs2

p

CD
, two separate saturation functions Ωūs1

p
,Ωūs2

p
, with

saturation limits ūs1
p and ūs2

p , are used for the terms that correspond to the potentials and velocities, respectively. We add the
quadratic term CD∥vs

p∥vs
p to the controller (8) to compensate for the drag term in the dynamics (7).

2.3.2 At the herding stage

The analysis of the dynamics of the UAV shows that there is no significant coupling between its vertical and horizontal
subsystems when simple control is applied to its position. Therefore, when designing the formation at the herding stage, two
control methods are used to design the vertical and horizontal position subsystems separately. The vertical position subsystem is



6 TAYLOR ET AL.

c
p

s

v
p

s

φ
p

s

c
e

s

p
1

s

p
2

s

p
3

s

p
4

s

p
1

p
2

p
3

p
4

φ
e

s

Pursuers at seeking stage

Pursuers at herding stage

e
1

e
2

v
e

s

(c
δ

s,v
δ

s)

ρ
12

ρ
23 ρ

34

λ
1

λ
2

λ
3

λ
4

Obstacle

Obstacle

δ

(a)

y

x

y
e

y
p

xp xe
o

λ

λx

φ
p

v
e

vp

ϑ

Pursuer

Evader

λy

φ
e

(b)

F I G U R E 3 (a) Desired positions of the pursuers. (b) Schematic diagram of the formation evader and pursuer structure in the herding phase.

designed as żp = vpz , że = vez . As shown in Fig. 3(a), the herding stage is entered after the completion of the seeking phase. At
the same altitude, the relative position of the pursuer and evader is shown in Fig. 3(b). A coordinate system is defined for the
two-dimensional space. The relative distance to the centre of the UAV is λ, and the velocity of the evader and the pursuer are
angled with the x-axis as φe and φp, respectively. the angle between the line of the centre of the UAV and the direction of the
evader’s velocity is ϑ.

The horizontal position subsystem of the UAV is 
ẋ = v cosφ

ẏ = v sinφ

φ̇ = ω

(9)

To make it easier to describe the relative position of the evader and pursuer in the herding stage in the same plane, λ is
decomposed along the x-axis and y-axis of the coordinate system into λx, λy, thus λx = –(xe – xp) cosφe – (ye – yp) sinφe and
λy = (xe – xp) sinφe – (ye – yp) cosφe. Furthermore, in order to ensure that the formations in the herding phase can always move
in the same direction, it is necessary to ensure that φp → φe. Therefore, a subsystem for three directions of the formation during
flight can be derived. The formation maintenance problem for pursuers in 3D space can be described as

lim
t→∞

(
λd

x – λx
)

= 0

lim
t→∞

(
λd

y – λy
)

= 0

lim
t→∞

(
λd

z – λz
)

= 0

lim
t→∞

(
φp – φe

)
= 0

(10)

where λd
x , λd

y , λd
z denote the desired distance in each of the three axes. λz = zp – ze and we can get

λ̇x = λyωe + ẋp cosφe + ẏe sinφe – (ẋe cosφe + ẏe sinφe) (11)

We set the heading angle error to be eφ = φp – φe and set vp, ωp to be the forward flight velocity and heading angle velocity of
the pursuer in the x-o-y plane. A certain velocity constraint exists in the direction perpendicular to the forward flight velocity as
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ẏp cosφp – ẋp sinφp = 0. By simplifying it through the trigonometric identity we can get{
λ̇x = λyωe + vp cos eφ – ve

λ̇y = –λxωe + vp sin eφ
(12)

where ve = ẋe cosφe + ẏe sinφe. We set λd to be the desired relative distance to the centre of the UAV. Thereby the relative
position relationship between evader and pursuer can be determined by λ and ϑ, where ϑ ∈ [–π,π) is shown in Fig. 3. Therefore,
we can get λd

x = λd cosϑ and λd
y = λd sinϑ. In this case, the formation maintenance problem for pursuers is simplified to λ→ λd

and ϑ→ ϑd, which is further converted to λx → λd
x and λy → λd

y . When the formation is stable, the relative distance between
evader and pursuer λd is a preset fixed value, thus ∥λd∥2 = λ0 and λ̇d = 0. We get λ̇d

x = –λ0ϑ̇ sinϑ and λ̇d
y = λ0ϑ̇ cosϑ. The

relative position error between evaders and pursuers in the herding phase in the x-o-y plane can be expressed as ex = λd
x – λx and

ey = λd
y – λy. The relative dynamics of the formation in the herding phase when the formation is in three dimensions can then be

represented as 
ėx = eyωe – vp cos eφ + f1
ėy = –exωe – vp sin eφ + f2
ėφ = ωp – ωe

ėz = vpz – vez

(13)

where we set f1 = –λ0ϑ̇ sinϑ – λ0ωe sinϑ + ve and f2 = λ0ϑ̇ cosϑ + λ0ωe cosϑ.
Any one of the UAVs in the formation needs to be able to track a predetermined desired trajectory steadily during the flight. In

this case, the pursuers drive the evaders’ movements and maintain the basic stability of the formation according to the preset
formation structure. Therefore, with the formation set in advance, the flight control problem of the formation as a whole is
simplified to the flight control problem of the evaders.

For the pursuer, its final trajectory route depends on the size of λd. When the formation is moving in a triangular formation,
the pursuer needs to satisfy the following conditions

xd
p = xe + λx cosφe – λy sinφe

yd
p = ye + λx sinφe – λy cosφe

zd
p = ze + λz

(14)

Eq.(13) gives the speed required by the pursuer to maintain the formation. Therefore, its trajectory tracking needs to satisfy
lim

t→∞

(
vd

px
– vpx

)
= 0

lim
t→∞

(
vd

py
– vpy

)
= 0

lim
t→∞

(
vd

pz
– vpz

)
= 0

(15)

where vd
p is the expected velocity in the pursuer’s inertial system, respectively, which is decomposed as vd

px
= vd

p cosφp and
vd

py
= vd

p sinφp. From Fig. 3 it can be seen that the relationship between the pursuer’s heading angle and yaw angle in order to

maintain the formation is ψd
p = φd

p – arctan
(

vpyb

vpxb

)
, where vpxb and vpyb are the speed from the aircraft coordinate system along

the x-axis and y-axis, respectively.

2.4 Preliminaries

To obtain the main results of this paper, the following Definitions and Lemmas are provided in this subsection.

Definition 1. Continuous-time non-linear autonomous system is designed to

ẋ = f (x, t), x(t0) = x0 (16)

where x ∈ Rn is an n-dimensional state vector and f : Rn → Rn is an n-dimensional vector function. If there exists some state
quantity xε such that ẋε = f (xε, t) = 0, ∀t ≥ t0. Then, it is called an Equilibrium point or equilibrium state of the system xε.
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Definition 2. When eφ → 0, we define

Θ =
{

xi(t)
∣∣xi(t) → 0,∀xi(0) ∈ Θ, t → ∞

}
(17)

as a bounded closed compact set and take the neighbourhood Γ along the boundary of Θ.
Lemma 1. 33,34 For Eq. (16), we construct a scalar function V(x, t) with continuous first-order partial derivatives for both x and
t, where V(0, t) = 0. For all non-zero state points x in the state space that satisfy

(1) V(x, t) is positive definite and bounded, namely, there exist two continuous non-decreasing scalar functions α∥x∥ and β∥x∥
in space with α(0) = 0 and β(0) = 0 such that for all t = [t0,∞) and all x ̸= 0 they make

β∥x∥ ≥ V(x, t) ≥ α
(
∥x∥

)
> 0 (18)

(2) The derivative V̇(x, t) of V(x, t) with respect to time t is negative definite and bounded, that is there exists a continuous
non-decreasing scalar function γ∥x∥ in space, where γ(0) = 0, such that for all t = [t0,∞) and all x ̸= 0 they make

V̇(x, t) ≤ –γ
(
∥x∥

)
< 0 (19)

Therefore, the system is asymptotically stable. If it can also be satisfied that when ∥x∥ → ∞, there is α
(
∥x∥

)
→ ∞, namely

V(x, t) → ∞. Hence, the equilibrium state x = 0 of the system at the origin is globally uniformly asymptotically stable.
Lemma 2. 34,35 Let Θ be a bounded closed compact set with the property that every solution of (16) which begins in Θ remains
for all t ≥ t0. Assume there is a scalar function V(x) which has continuous first partials in Θ and is such that V̇(x) ≤ 0. Let M
be the largest invariant set and every solution starting in Θ approaches M as t → ∞.
Lemma 3. 34,35 Let V(x) be a scalar function with continuous first partials satisfying

V(x) > 0 for all x ̸= 0

V̇(x) ≤ 0 for all x

V(x) → ∞ as ∥x∥ → ∞
(20)

then the system (16) is completely stable.

3 DESIGN OF THE FORMATION MAINTENANCE CONTROLLER

As there is no obvious coupling between the vertical and horizontal position channels of the UAV, the vertical position channel
of the UAV needs to be considered separately. The height control subsystem function for the pursuer is set as żp = vpz . The
relative position error of the pursuer in z-axis in the herding phase is set as ez = ∆z = λd

z – λz. For the vertical channel, which
is fully decoupled from the horizontal channel, we use PID control method for the design. It is straightforward to obtain the
desired velocity signal required for the vertical channel when the pursuer is tracking the evader in flight as

vpz = kpez + ki

∫ t

0
ez dt + kd ėz (21)

From Fig. 3, it can be seen that the specific position of the evader and the relative distance between the evader and the pursuer
in the herding phase are known, and the expected vp and ωp of the pursuer can be used as the reference velocity of the formation
as a whole to achieve the design of formation maintenance in the herding phase. Due to the non-linear feature of the error system,
the backstepping method is chosen here for the controller design of the pursuer’s forward flight speed and heading angular
velocity. As the error system model of the pursuer does not have a strict form of feedback, PID control is used for the design of
the channels that do not have the conditions for backstepping.

When the linear and angular velocities of the evader in the formation are known, the vp and ωp of the pursuer determine the
magnitude of ex and ey, and the ωp of the pursuer can reflect the actual angular deviation of the heading between the evader
and the pursuer in the formation in the herding phase. From Eq. (13), it can be seen that when ωe ̸= 0, the desired flight
trajectory of the evaders in 3D space is curved, and the analysis conducted through the error system shows that the election of
ex =

(
ω–1

e

)
·
(
f2 + k1ey

)
. When eφ = 0 and the control parameter k1 > 0, the dynamic error of Eq. (13) is ey → 0. Therefore, the
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relative kinematic model of the pursuer and evader within the formation in the x-o-y plane can be translated into a strict feedback
property. The backstepping method is used to design a suitable control law for vp and ωp in formation maintenance. Firstly, we
define a new error variable

σ = ex – ω–1
e

(
f2 + key

)
(22)

Substituting Eq. (22) into Eq. (13) gives
ėy = –ωeσ – key – vp sin eφ (23)

The derivative of Eq. (22) can be obtained as

σ̇ = ėx – ω̇–1
e

(
f2 + key

)
– ω–1

e

(
ḟ2 + kėy

)
= eyωe – vp cos eϕ + f1 – ω̇–1

e

(
f2 + key

)
– ω–1

e

[
ḟ2 + k

(
–key – ωez – vp sin eϕ

)] (24)

where ω̇–1
e denotes the first order derivative of ω–1

e with respect to time. To ensure that the formation structure does not change at
the herding stage, we need the following theorem.

Theorem 1. Consider the following Lyapunov function

V =
1
2
(
e2

y + σ2 + e2
φ

)
= V1 +

1
2

e2
φ

(25)

where V1 belongs to the invariant set M, there exists desired ωp and vp

ωp = ωe – kφeφ – kφ1ėφ – kφ2

∫ t

0
eφ dt (26)

vp = k2σ + ey
(
k2

1ω
–1
e – k1ω̇

–1
e

)
+ f1 – ω̇–1

e f2 – ω–1
e ḟ2

= k2ex + ey
(
k2

1ω
–1
e – k1ω̇

–1
e – k1k2ω

–1
e

)
+ f1 – ω̇–1

e f2 – ω–1
e ḟ2 – k2ω

–1
e f2

(27)

to satisfy the (asymptotic) stability requirement of the relative dynamic system of the formation (Eq.13), where k2 > k1 > 0.

Proof. Substituting Eqs. (13), (22), (23), and (24) into (25), we obtain

V̇ = eyėy + σσ̇ + eφėφ
= –ke2

y + σ
[
vp

(
– cos eφ + kω–1

e sin eφ – eyσ
–1 sin eφ

)
+ kσ

+f1 + ey
(
k2ω–1

e – kω̇–1
e

)
– ω̇–1

e f2 – ω–1
e ḟ2

]
+ eφ

(
ωe – ωp

) (28)

From Eq. (28), the vp coefficient expected by the pursuer in the x-o-y plane is

ηp = – cos eφ + kω–1
e sin eφ – eyσ

–1 sin eφ (29)

According to Eq. (29), it is clear that by selecting a suitable heading angle error eφ, the pursuer may expect a vp factor of zero.
Therefore, Eq. (28) does not represent the vp expected in the formation maintenance controller. Furthermore, it is clear from Eq.
(13) that for the pursuer, picking the appropriate ωp, the heading angle error eφ can be any value. But in practice, it is that the
heading angle error eφ should be close to zero. Therefore, we assume that when eφ → 0 holds, Eq. (13) can be rewritten as{

ėx = ωeey – vp + f1
ėy = –ωeex + f2

(30)

where f1, f2 are known finite polynomials. Choosing Eq. (22) as the virtual control input and substituting it into (30) we get

ėy = –ωeσ – k2ey (31)

Taking the derivative of Eq. (22) and substituting Eq. (31) into it gives

σ̇ = ωeey – vp + f1 – ω̇–1
e

(
f2 + key

)
– ω–1

e

[
ḟ2 + k

(
–ωeσ – key – vp sin eφ

)]
(32)
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and from Eq. (25), the Lyapunov function part V1 takes the derivative as follows

V̇1 = eyėy + σσ̇

= –k1e2
y + σ

[
–vp + k2σ + ey

(
k2

1ω
–1
e – k1ω̇

–1
e

)
+ f1 – ω̇–1

e f2 – ω–1
e ḟ2

] (33)

Substituting Eq. (27) into Eq. (33), we get
V̇1 = eyėy + σσ̇

= –k1e2
y – (k2 – k1)σ2 ≤ 0

(34)

In other words, when eφ → 0, we can obtain V̇ ≤ 0 and V > 0 based on Lemma 2 and 3. On the other hand, the domain of ey is
bounded within the neighbourhood Γ since ey only contains cos or sin functions and constant terms, which makes sure that Θ is
bounded. Hence, Theorem 1 holds.

When ω = 0, the evader is then moving in a straight line in three dimensions. Therefore, the relative position error of Eq. (13)
is simplified to 

ėx = –vp cos eφ + f̃1
ėy = –vp sin eφ + f̃2
ėφ = ωp

(35)

where f̃1 = –λ0ϑ̇ sinϑ + ve and f̃2 = λ0ϑ̇ cosϑ.

Theorem 2. Considering the following Lyapunov candidate function

V2 = ln (cosh ex) + ln
(
cosh ey

)
+

1
2

e2
φ (36)

When the evader moves in a straight trajectory, there exists desired vp and ωp that enable Eq. (35) to satisfy the requirement
of asymptotic stability of the system.

Proof. Taking the derivative of Eq. (36) and substituting Eq. (35) into it gives

V̇2 =
(
–vp cos eφ + f̃1

)
tanh ex +

(
–vp sin eφ + f̃2

)
tanh ex + ωpeφ (37)

set the pursuer’s expectation vp and ωp in the x-o-y plane as

vp = c1
(
tanh ex cos eφ – tanh ey sin eφ

)
+ ξ (38)

ωp = –c2eφ – c3sgn(eφ) tanh2(ey) (39)

where c1, c2, c3 > 0. Substituting Eqs. (38) and (39) into (37), we get

V̇2 = –c1 tanh
2(ex) cos2(eφ) –

[
c3

∣∣eφ∣∣ – c1 sin
2(eφ)

]
tanh2(ey)

+ ξ
(
tanh ex cos eφ + tanh ey sin eφ

)
+ f̃1 tanh ex + f̃2 tanh ey – c2e2

φ

(40)

where ∥ξ
(
tanh ex cos eφ + tanh ey sin eφ

)
+ f̃1 tanh ex + f̃2 tanh ey∥ ≤ 2∥ξ∥ + ∥f̃1∥ + ∥f̃2∥. Further analysis shows that the

parameter ξ and η are selected as

ξ = –
f̃1 tanh ex + f̃2 tanh ey

η + tanh ex cos eφ + tanh ey sin eφ
(41)

η =

{
0, tanh ex cos eφ + tanh ey sin eφ ̸= 0

η0, tanh ex cos eφ + tanh ey sin eφ = 0
(42)

where η0 > 0. When the evader is moving on a straight trajectory, f1, f2 in Eq. (35) are both bounded numerical terms, so that
there must exist 2∥ξ∥ + ∥f̃1∥ + ∥f̃2∥ ≤ γ. Substituting Eq. (41) into (40), when η = 0

V̇2 = –c2e2
φ – c1 tanh

2(ex) cos2(eφ) –
[
c3

∣∣eφ∣∣ – c1 sin
2(eφ)

]
tanh2(ey) (43)

when eφ → 0, sin2(eφ) <
∣∣eφ∣∣ always holds. Therefore, if we choose the appropriate c1, c2, c3 > 0, then V̇2 ≤ 0. When η = η0,

we choose the appropriate η0, thus V̇2 + γ ≤ 0.
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In summary, when the evader moves in a curve, the control laws designed by Eqs. (26) and (27) can achieve stable driving
of the evader by the formation pursuer in the herding phase and maintain the desired formation. When the evader moves in a
straight trajectory, the control law designed by Eqs. (38) and (39) can achieve stable driving of the evader by the formation
pursuer in the herding phase and maintain the desired formation.

4 DESIGN OF THE TRAJECTORY TRACKING CONTROLLER

4.1 Position tracking controller

We set the height error of the evader in tracking the desired trajectory to{
e1 = zd – z

ė1 = żd – ż
(44)

Theorem 3. Considering the following Lyapunov function

V (e1) =
1
2

[
e2

1 + λ1

(∫ t

0
e1(τ ) dτ

)2
]

(45)

where λ1 > 0. The evader height tracking subsystem is designed with control input U1 to satisfy the requirement of Lyapunov’s
asymptotic stability.

Proof. The derivative of Eq.(45) gives

V̇ (e1) = e1

[
żd – ż + λ1

(∫ t

0
e1(τ ) dτ

)]
(46)

For Eq.(46), to ensure that V̇(e1) ≤ 0, use ż as the virtual control input and pick the function β1 as

β1 = żd + λ1

∫ t

0
e1(τ ) dτ + c1e1 (47)

where c1 > 0. Substituting Eq.(47) into (46), we get V̇(e1) = –c1e2
1 < 0. Although the Lyapunov stability condition is satisfied, it

does not ensure that ż will eventually converge to the set β1, so the error variable e2 is set as

e2 = β1 – ż = żd + λ1

∫ t

0
e1(τ ) dτ + c1e1 – ż (48)

Taking the derivative of Eq.(48) yields
ė2 = z̈d + λ1e1 + c1ė1 – z̈ (49)

In order to make ė2 > 0, the Lyapunov function is chosen from Eq.(47) and (48) as

V(e1, e2) =
1
2

[
e2

1 + e2
2 + λ1

(∫ t

0
e1(τ ) dτ

)2
]

(50)

Taking the derivative of Eq.(50) yields

V̇(e1, e2) = e1

(
ė1 + λ1

∫ t

0
e1(τ ) dτ

)
+ e2ė2 (51)

From Eq.(44) and (48), it follows that

ė1 = żd – ż = e2 – λ1

∫ t

0
e1(τ ) dτ – c1e1 (52)
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Substituting Eq.(49) and (52) into (51) gives

V̇(e1, e2) = –c1e2
1 + e2

[(
1 – c2

1 + λ1
)

e1 + c1e2 + z̈d – c1λ1

∫ t

0
e1(τ ) dτ – z̈

]
(53)

From Eq.(6), z̈ is a function on U1. To ensure V̇(e1, e2) ≤ 0, the control input for the evader height tracking subsystem is chosen as

U1 = η
[

g – z̈d –
(
1 – c2

1 + λ1
)

e1 – (c1 + c2) e2 + c1λ1

∫ t

0
e1(τ ) dτ

]
(54)

where η = m
cosφ cos θ and c2 > 0. And we get V̇(e1, e2) = –c1e2

1 – c2e2
2 ≤ 0.

From Eq.(6), the height control input U1 of the evader and the intermediate control quantities ux and uy of the roll and pitch
channels form its dynamic equations in x-axis and y-axis. Therefore, similar to the height error of the system, the position error
in the horizontal direction is set to {

e3 = xd – x

e5 = yd – y
(55)

From Eq.(44) and Theorem 3, it follows that, similar to the height error variable of the system, the error variable in the
horizontal direction is 

e4 = ẋd + λ2

∫ t

0
e3(τ ) dτ + c3e3 – ẋ

e6 = ẏd + λ3

∫ t

0
e5(τ ) dτ + c5e5 – ẏ

(56)

The evader’s horizontal position control input ux and uy is designed to satisfy Lyapunov’s asymptotic stability, thus

ux =
m
U1

[
–ẍd –

(
1 – c2

3 + λ2
)

e3 – (c3 + c4) e4 + c3λ2

∫ t

0
e3(τ ) dτ

]
uy =

m
U1

[
–ÿd –

(
1 – c2

5 + λ3
)

e5 – (c5 + c6) e6 + c5λ3

∫ t

0
e5(τ ) dτ

] (57)

where c3, c4,λ2 > 0 and c5, c6,λ3 > 0.

4.2 Attitude tracking controller

We set the yaw error of the evader in tracking the desired trajectory to{
e7 = ψd – ψ

ė7 = ψ̇d – ψ̇
(58)

Theorem 4. Considering the following Lyapunov function

V (e7) =
1
2

[
e2

7 + λ4

(∫ t

0
e(τ ) dτ

)2
]

(59)

where λ4 > 0. The evader yaw control subsystem is designed with control input U4 to satisfy the requirement of Lyapunov’s
asymptotic stability.

Proof. Similar to Theorem 3, we ensure that V̇(e7) ≤ 0, use ψ̇ as the virtual control input and pick the function α1 as
α1 = ψ̇d + λ4

∫ t
0 e7(τ ) dτ + c7e7 and set the error variable e8 = α1 – ψ̇ = ψ̇d + λ4

∫ t
0 e7(τ ) dτ + c7e7 – ψ̇. According to the

height tracking control subsystem in the evader model, to ensure that e8 is positive, the Lyapunov function is chosen as

V(e7, e8) = 1
2

[
e2

7 + e2
8 + λ4

(∫ t
0 e7(τ ) dτ

)2
]

. The derivative of this equation gives

V̇(e7, e8) = –c7e2
7 + e8

[(
1 – c2

7 + λ4
)

e7 + c7e8 + ψ̈d – c7λ4

∫ t

0
e7(τ ) dτ – ψ̈

]
(60)
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where ψ̈ = θ̇ϕ̇
(

Jx–Jy

Jz

)
+ 1

Jz
U4 from Eq.(6). Therefore, we set the yaw control input U4 to

U4 = Jz

[
–θ̇ϕ̇

(
Jx – Jy

Jz

)
+ ψ̈d +

(
1 – c2

7 + λ4
)

e7 + (c7 + c8) e8 – c7λ4

∫ t

0
e7(τ ) dτ

]
(61)

where c7, c8,λ4 > 0. Obviously, this makes V̇(e7, e8) = –c7e2
7 – c8e2

8 ≤ 0 holds.

The yaw angle of the evader is determined by τ3. When the design of the yaw and horizontal position controller for the system
is completed, the control inputs for its roll and pitch are determined by ux and uy. From Eq.(6), when the evader is tracking the
desired trajectory its desired roll and pitch angles are ϕd = arcsin

(
ux sinψd – uy cosψd

)
and θd = arcsin

(
ux sinψd+uy cosψd

cosϕd

)
.

Based on Eq.(56) and (57), the design was carried out using the integral backstepping method, setting its roll and pitch attitude
error to 

e9 = ϕd – ϕ

e10 = ϕ̇d + λ5

∫ t

0
e9(τ ) dτ + c9e9 – ϕ̇

e11 = θd – θ

e12 = θ̇d + λ6

∫ t

0
e11(τ ) dτ + c11e11 – θ̇

(62)

The control inputs U2 for the roll and U3 for the pitch of the evader are designed to satisfy Lyapunov’s asymptotic stability, thus

U2 = Jx

[
–θ̇ψ̇

(
Jy – Jz

Jx

)
– Ωgθ̇

Jr

Jx
+ ϕ̈d +

(
1 – c2

9 + λ5
)

e9 + (c9 + c10) e10 – c9λ5

∫ t

0
e9(τ ) dτ

]
U3 = Jy

[
–ϕ̇ψ̇

(
Jz – Jx

Jy

)
– Ωgϕ̇

Jr

Jy
+ θ̈d +

(
1 – c2

11 + λ6
)

e11 + (c11 + c12) e12 – c11λ6

∫ t

0
e11(τ ) dτ

] (63)

where c9, c10, c11, c12,λ5,λ6 > 0.

4.3 Collision avoidance potential function

To ensure the safety of each UAV’s flight, it is assumed that the UAV can detect obstacles within its sensing area. Since it is
necessary to use both attractive forces to enable the relative aggregation of UAVs within the formation and repulsive forces
to avoid collisions, we propose to add a transition area between attractive and repulsive potential edges by means of dynamic
adjustment factors α and β. When the repulsive adjustment factor is too small, the UAV may not be able to avoid obstacles due
to too little repulsion; when the attractive adjustment factor is too small or the repulsive adjustment factor is too large, it will
result in unknown chattering of the final obstacle avoidance trajectory. To address the above problems, the adaptive potential
function is designed. The attractive transition region makes the attractive force on the UAV decrease gradually with the distance
between the UAV and the obstacle, so as to achieve the purpose of safe obstacle avoidance. The repulsive transition region makes
the UAV have more space to adjust its direction and improve the chattering problem of the obstacle avoidance trajectory.

The established potential function combined with distributed control law is then used to generate trajectories for each UAV
tracking without any collisions. The method allows a virtual potential field to exist around each UAV in the formation, and each
UAV will converge to a steady state at inter-aircraft distances under the combined forces of attraction and repulsion. For the i-th
UAV, the repulsive potential function Urep,i can be described as:

Urep,i =


1
2
αkrep

(
1
ρio

–
1
do

)2

ρio ≤ d1

0 ρio > d1

(64)

where krep denotes the gain coefficients of the repulsive function. As shown in Fig. 4, for a spherical obstacle Ok of radius Ro

centred on ck, ρio is the distance from UAV i to ck, do denotes the influence range of the obstacle, d1 is the influence range of the
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F I G U R E 4 (a) Representation of virtual forces between virtual obstacles and UAVs. (b) Cross-sectional diagram of the UAV potential area.

obstacle in the increased transition area. The dynamic adjustment factor α added to the repulsive function is defined as:

α =


1 ρio < do

1
2

[
1 + cos

(
2(ρio – do)

Ro
π

)]
do ≤ ρio < d1

0 ρio ≥ d1

(65)

We then describe the attractive potential function as

Uatt,i =
1
2
βkattρ

2
ij (66)

where dynamic adjustment factor β added to the attractive function is

β =


0 ρio < Ro

1
2

[
1 + sin

(
2(ρio – Ro)

Ro
π –

π

2

)]
Ro ≤ ρio < do

1 ρio ≥ do

(67)

where Uatt,i denotes attractive potential. katt denotes the gain coefficients of the attractive function. If the position coordinates of
the i-th UAV is Pi = [xi, yi, zi]T , then ρij = ∥Pi – Pj∥ denotes the Euclidean distance between UAV i and UAV j.

Let the desired distance between neighbouring UAVs in the formation be dmn ∈ [dm, dn]. The virtual forces between the UAVs
in the formation are divided into inter-agent repulsive forces and inter-agent attractive forces. The inter-agent repulsion causes
neighbouring UAVs in the formation to move away from each other to avoid collisions between the aircraft. Inter-agent attraction
brings neighbouring UAVs in a formation closer together to avoid formation break-up. The inter-agent virtual force Fs

ij between
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UAV i and j is defined as:

F⃗s
ij =



n∑
j=1,j̸=i

kij

(
1
ρij

–
1

dm

)(
Pi – Pj

)
dmin < ρij < dm

n∑
j=1,j̸=i

kij
(
Pi – Pj – Pij

)
dm ≤ ρij ≤ dn

n∑
j=1,j̸=i

kij

(
1

dmax – dn
–

1
dmax – ρij

)(
Pi – Pj

)
dn < ρij < dmax

(68)

where dmin denotes the minimum safe distance between each UAV in the formation, kij is the unit direction vector from i to j. As
illustrated in Fig. 4. When other UAVs are present in the UAV area within the formation, the UAVs will adjust their distance with
respect to other UAVs in the field of action according to the pre-defined rules of inter-agent virtual force, effectively avoiding
collisions while maintaining the formation and achieving pursuer to evader trajectory tracking in the herding phase. When the
formation is not in the influence range of the obstacle, the virtual force within the formation is dominant, and the formation
reaches stability with ∥Pi – Pj – Pij∥ → 0. When dmin < ρij < dm, UAV j is in the repulsive domain of UAV i. Meanwhile, the
virtual force between UAV i and j is expressed as repulsive force, and the two UAVs will move away from each other. When
ρij = dmin, the repulsive action is at its maximum. When ρij = dm, Fs

ij = 0. When dm < ρij < dn, UAV j is in the stability domain
of UAV i. When dn < ρij < dmax, UAV j is in the attractive domain of UAV i. At this point the virtual force between the two
UAVs is expressed as attractive force and two UAVs will approach each other. When ρij = dn, Fs

ij = 0. When ρij = dmax, the
attractive force between the formation UAVs is at its maximum.

Inside the formation, UAV i is affected by the virtual forces of other UAVs within the potential range. Outside the formation,
it is subject to the virtual potential field forces of other formation UAVs and obstacles. The virtual combined force on UAV i in
space is therefore expressed as

F⃗total
i = ϱiF⃗s

ij(ρij) + ςi
[
k1F⃗att,i(ρij) + k2F⃗rep,i(ρij)

]
(69)

where ϱi, ςi, k1, k2 denote the control parameters and have ϱi ̸= 0 for any one UAV i in the formation, and F⃗att,i(ρij), F⃗rep,i(ρij) are
determined by the potential functions. The design of the obstacle avoidance potential function is followed by effective modulation
of the velocity vector of each UAV, thereby enabling cooperative obstacle avoidance control of the UAV formation. For this, the
desired velocity vector of UAV i is set as V⃗i = F⃗total

i . The desired velocity of UAV i is decomposed by in the x, y and z axes to
give Vx

i , Vy
i , Vz

i , which are the desired velocity components in each axis, respectively. We translates this velocity component into
the speed, heading and pitch control required for the actual flight of each UAV in the formation, which are expressed as

Vi =
√

(Vx
i )2 + (Vy

i )2 + (Vz
i )2

ψi = arctan
Vy

i

Vx
i

θi = arctan
Vz

i

Vx
i

(70)

The formation achieves cooperative collision avoidance when UAV i in the formation enters the range of an obstacle or
neighbouring UAV j’s potential area, and all other UAVs in the formation are in the stable domain. The velocity components of
UAV i in x, y and z axes are 

Vx
i = ϱi

n∑
j=1

kij
(
xi – xj – ρij,x

)
+ ςi

[
k1

√
µ2

s + (µt – 1)2Fx
att,i + k2Fx

rep,i

]

Vy
i = ϱi

n∑
j=1

kij
(
yi – yj – ρij,y

)
+ ςi

[
k1

√
µ2

s + (µt – 1)2Fy
att,i + k2Fy

rep,i

]

Vz
i = ϱi

n∑
j=1

kij
(
zi – zj – ρij,z

)
+ ςi

[
k1

√
µ2

s + (µt – 1)2Fz
att,i + k2Fz

rep,i

] (71)

where µt denotes the time perturbation factor of attraction. When the speed of the UAV is above a certain threshold, µt is zero, and
when the speed of the UAV is maintained under a specific value for a certain period of time, µt denotes the integral function of
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time, which is expressed as µt =
∫ t

t0
ε dt, t > t0, and dρ

dt < v0. When the obstacle is in the middle of the formation’s neighbouring
UAVs, a random force µs is added to prevent collision that may be detected when the UAVs are constantly approaching the
obstacle, where µs =

∫ t
t0
ξ dt, t > t0 and dρ

dt < v0.

5 SIMULATION

In this section, the simulation is conducted to verify the effectiveness of the proposed framework and method. We provide
the simulation results of both staged of seeking and pursuing. During the initial seeking process, the pursuers seek the distant
evaders. After satisfying the relative distance between the pursuers and the evader, the pursuing phase is initiated so that the
pursuers drive the evader to the target area. Then we extend the pursuing phase to the three-dimensional environment to show
the stability and superiority of the proposed method.

A. 2D environment

The simulation results of two stages are shown in Fig. 5. At the seeking stage, two sets of pursuers find and approach the
evaders as shown in Fig. 5(a). After entering the pursuing phase, two groups of pursuers successfully drive the evaders to the
designated areas S1 and S2 in a complex environment with various obstacles in a two dimensional space, as shown in Fig. 5(b).
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F I G U R E 5 Snapshots of the paths of the UAVs in two dimensional space.

B. 3D environment

Consider a set of quadrotor UAVs (e = 1 evader and p = 2 pursuers) in three dimensional environment, where the mass of each
UAV is set to be m = 0.76 kg, the initial state of the evader is chosen to be ve = 0.54π m/s and ωe = 0.27π rad/s. Meanwhile, the
normal repulsive force influence range of each UAV and obstacle was set to d0 = 30, and the designed repulsive force influence
range d1 = 40. The parameters krep = 8, katt = 4, perturbation factor ε = 3, and random force factor ξ = 8. The sinusoidal
disturbances were applied to each UAV.

At the pursuing stage, the pursuer drives the evader to the target location, and the motion of the desired trajectory for the
evader (labeled 0) is set as 

x0 = 4 cos(0.27πt)

y0 = 4 sin(0.27πt)

z0 = –0.27t

The initial position of the UAV is denoted as [x, y, z,φ], i.e., [2, 0, 0,π/6] for the evader, [–0.5, –1, 0,π/10] for pursuer 1, and
[–2, 2, 0,π/14] for pursuer 2. The flight space is deployed with two obstacles, two of which are spherical obstacles located at
c1 = [0, 0, –1.5] and c2 = [0, 0, –6.5], respectively, with radius Ro = 2 m.
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F I G U R E 6 Flight trajectories of three UAVs.
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F I G U R E 7 The relative distance curve between pursuing UAVs and evading UAV.

Figure. 6 shows the flight trajectories of the proposed collision-free formation control strategy for three (2 pursuers, 1 evader)
quadrotor UAVs in 3D space, where the outermost blue and innermost purple trajectories represent the trajectories of the pursuers,
and the middle trajectory represents the evader’s trajectory. Two spherical obstacles were placed in the flight space. Figs. 7(a)
and 7(b) provide the relative distance curves between the pursuers and the evader. It can be observed that it takes about 9s to
complete a stable pursuing of the trajectory. Since the positions of each UAV are vectors with directions, the sum of the position
vectors in x, y, and z axes is constant at any time after 9s. Figures. 8(a) and 8(b) show the velocity change curves of the pursuers
1 and 2, respectively. The figures show that the speed of each pursuing UAV can finally reach stability around 9s.

Take pursuing UAV 1 as an example to illustrate the effectiveness of the designed control law. In Fig. 9(a), the tracking error
trajectories of pursuing UAV 1 in x, y and z axis are shown. During the initial flight, the pursuing UAV 1 adjusts its state and
senses any obstacles around it. During this time, the tracking error trajectory fluctuates due to the need to avoid collisions with
obstacles or nearby UAVs. At this point, each pursuing UAV is able to maintain a pre-determined formation, matching the desired
relative distance and trajectory. Fig. 9(b) illustrates the tracking error trajectories of pursuing UAV 1 with the addition of a
sinusoidal perturbation. As we can observe, over time, the designed control law is effective under uncertainties. As for the evader
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F I G U R E 8 The velocity change curves of pursuing UAV 1 and 2.
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(a) Tracking error trajectories of pursuing UAV 1 in the general case
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(b) Tracking error trajectories of pursuing UAV 1 with the addition of sinusoidal
perturbation

F I G U R E 9 Tracking error trajectories of pursuing UAV 1 in different cases.

shown in Fig. 10, it can be observed that the trajectory converges to the desired one, showing that the goal of herding is achieved.
Finally, The result of attitude control is shown in Fig. 11, which also shows the effectiveness of the whole control scheme.

From the simulation results it can be observed that under the proposed framework and control scheme, the pursuing UAVs
are able to seek, pursue and eventually drive the evading UAVs to the designated target or along the desired trajectory while
avoiding collisions. In addition, all pursuing UAVs achieve asymptotic tracking in the presence of unknown disturbances and
uncertainties, and the controllers converge stably using the control scheme in the developed collision avoidance formation during
the pursuing process.

6 CONCLUSION

In this paper, a novel collision-free pursuit-evasion framework is proposed to solve the herding and formation control problem
of a group of non-cooperative quadrotor UAVs in the presence of uncertain disturbances. First, the desired trajectory of the
formation evader is set and used as the initial actual trajectory. The pursuit-evasion problem is decomposed into whether the
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F I G U R E 10 The position error of the evading UAV
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F I G U R E 11 The attitude tracking curves of yaw angles

pursuer can find and approach the evaders at the seeking stage and drive the evaders to follow the desired trajectory while
maintaining the formation at the pursuing stage. The formation maintenance controller and trajectory tracking controller are
designed and the collision avoidance potential function is established to ensure collision avoidance with other UAVs or obstacles.
The stability of the entire closed-loop system was provided using Lyapunov’s theorem. The stability analysis and simulation
results for three UAVs show that the proposed framework achieves the goal of herding formation and collision avoidance in a
pursuit-evasion scenario under uncertainties and external disturbances.
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