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Abstract— This paper presents a novel cooperative herding
strategy with an open-formation configuration called "FlexNet"
in pursuit-evasion games under limited field of view. It is
first proved that the desired formation of FlexNet can be
generated with limited angular field of view. Then a cooperative
pursuit strategy with FlexNet is proposed, which can capture a
maneuvering evader by adjusting the shape of the formation.
Mathematical proof is given on the capture condition of the
FlexNet formation under specific dynamics model of the evader.
Compare with closed formations, an open formation allows for
better flexibility and reduces cost by using fewer pursuers to
achieve a successful capture. Simulation results show that the
proposed open-formation configuration and the pursuit strategy
is capable of accomplishing given capture tasks.

I. INTRODUCTION

Pursuit-evasion games have been extensively studied in
the literature. Various approaches including optimal control
[1], area-minimization [2], value function based method
[3], mean-field method and reinforcement learning [4], [5]
exist in the literature for solving pursuit-evasion games. In
addition, multiplayer pursuit-evasion games have also gained
attention. For example, Chen et al. [6] consider multi-player
pursuit-evasion capture conditions and compute cooperative
control strategies. Evasion strategies for evading agents using
a mathematical framework based on Apollonius circles are
proposed in Ref. [7]. Chen et al. [8] and Huang et al.
[9] consider reach-avoid games to determine the strategies
(winning or losing regions) and solve the HJI equation
numerically using the level set method.

While traditional pursuit-evasion problems focus on the
capture or evasion aspects of the game, a different class
of problems, known as herding [10], focuses on steering
uncontrolled agents to a target location, such as [11], [12],
[13]. Unlike the pursuit-evasion problems, in the indirect
herding problem, the influencing agent must pursue the
roaming agent while escorting it to the desired location
through inter-agent interactions. Inspired by these results,
[14] and [15] investigated the problem of indirect regulation
(also known as indirect herding), where the influencing
agent switches between target agents, through a switching
systems approach. In Ref. [11], geometrically constrained
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forcing functions based on geometric constraints are used to
develop controllers for a set of agents that indirectly regulate
other agents by forming an arc and forcing the targets
to a desired position. However, most geometric herding
formation studies are limited to linear motions or have strict
requirements on the initial relative positions. Besides, most
of the above proposed herding methods attempt to construct
a closed formation to capture the target. In practice, a closed
formation for completing the task requires a higher number
of agents causing more costs. Also, it becomes essential to
recapture the evader after the closed formation is damaged.
Therefore, studying an open-formation configuration has
significant practical meanings.

Another issue we are concerned about is the Field of View
(FOV) interactions. For example, robots equipped with the
ability to perceive other agents in a visually restricted area
are discussed in Refs. [16], [17], [18], [19]. In Ref. [16],
the consensus and inclusion problem for a network of single
integrator agents with a finite angular FOV is considered.
Under the assumption of connectivity of interacting directed
graphs, the authors managed to prove the convergence of
a control strategy considering a first semicircular FOV and
a non-uniform angular FOV. Furthermore, in Ref. [19], the
authors addressed the problem of coordinating the motion of
teams of finite FOV robots, which leads to asymmetries in
their interaction. Nevertheless, the issue of FOV interactions
has not been addressed in the study of herding and pursuit-
evasion games.

Therefore, in this paper, we propose an open formation
(FlexNet) of pursuers to achieve effective capture of ad-
versarial evaders. We expand the evader’s locomotion after
equipping each pursuer with a finite FOV. Inspired by the
interaction dynamics between agents during the herding
process, a new segmented interaction model is developed
for the evader to describe the influence of the pursuers. As
shown in Fig. 1, the pursuers with limited FOV first seek
the evader and generate the desired formation. By gradually
adjusting the size of the FlexNet, the pursuers finally achieve
cooperative herding of the evader. The main contributions of
the paper are summarized as:

1) Formation generation with limited FOV: The model-
ing of limited FOV is integrated in the process of formation
generation during the seeking stage. The novelty lies in the
guarantee of successful formation convergence under the risk
of losing the target with limited FOV.

2) An open-formation configuration: we propose and
construct a FlexNet formation. A strategy is designed for the
FlexNet to gradually change its size and shape to achieve an
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Fig. 1. An overview of FlexNet with an open-formation and field of view configuration for cooperative capture in pursuit-evasion games.

effective capture.

II. PROBLEM DESCRIPTION

FlexNet inspired by Refs. [20], [21] is an open and flexible
net of connections, called flex, formed by the pursuers as
shown in Fig. 2. The FlexNet Capture consists of two stages:
1) Formation generation: FOV and generation, 2) FlexNet
pursuit: pursuit and capture. In the first stage, all pursuers
converge to a distance (may not be the same) from the evader
to form an initial formation. In the second stage, FlexNet
pursuit is performed. These stages are discussed as follows.

A. Field of View

The pursuers may be initially scattered throughout the
workspace. Once the evader is sensed in the sensing area
of the pursuers, the pursuers are tasked to capture it. This
requires the pursuers to move close to the evader in order to
capture it.

To seek the evader in workspace, the mathematical model
for the pursuer’s FOV is established. We first assume a 2D
arc area geometry to encapsulate the sensing capabilities of
the pursuer, denoted as A. The notion of 2D arc area which
is used to describe the FOV of agents is defined in the sequel
(as shown in Fig. 3).

Definition 1. The 2D arc area is defined as a non-empty
set T such that κξp ∈ T for any ξp ∈ T and κ > 0. In

other words, T is the union of a set of half-lines starting at
a common vertex and extending to infinity. The radian angle
ϑ ∈ (0, 2π] is defined as the angle between the two half-lines
that form the boundaries of the arc.

The FOV of the i-th agent is characterized as the radian
angle ϑi, which represents the angular constraints of the
agent’s sensing device, and the vertex ξip, which represents
the position of i-th agent. Let e⃗i be a unit vector which
passes through ξip and is directed toward the interior of an
arc area such that it bisects the angle ϑi. The corresponding
FOV, denoted by a 2D arc area Ai, is defined as

A =

{
ξp ∈ R2

∣∣∣∣ (ξe − ξp) · e⃗
∥ξe − ξp∥2

≥ cos
ϑ

2

}
(1)

where ξp(t) ∈ R2 denotes the position of a specific pursuer
at time t. The inner product of two arbitrary vectors is
represented by ·, and ∥·∥ indicates the Euclidean norm.

B. FlexNet

Recall that the pursuers have already converged to a small
distance from the evader and will form the open formation,
where the pursuers hunt in closed geometries to overcome
the evasive capabilities of evaders. In this paper, a FlexNet
Capture structure is proposed to enable the capture of a
single evader by multiple pursuers. Figure 4 shows an open
formation of a set of pursuers with FOV sensing.
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Fig. 2. Formation generation and FlexNet pursuit in the whole process.
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Fig. 4. A group of pursuers (leader pursuers are marked orange) with field
of view Am (red) capture a single evader (green).

This open formation presents a semi-circular arc-like
structure. The center of the arc is noted as the virtual
leader. We define the pursuer on the x-axis as level 0 (0-
th). The other pursuers (level 1 to level m) are symmetrically
distributed on the semicircle. Thus there are a total of 2m+1
pursuers on the open formation. For each pursuer, its position
in the coordinate system can be determined as (ξipx

, ξipy
),

where i = {0, 1, . . . ,m}. Additionally, we can calculate the
overall distance between the evader and a pursuer situated at
the i-th (except 0-th) level is λi, where the central pursuer
as the 0-th that λ0 = ξex − ξ0px

.
The pursuers move in formation along the x-axis toward

the evader, maintaining the velocity vp and preserving their
relative configuration. If ξp(t) ∈ R2 denotes the position of a

specific pursuer at time t, then ξ̇p(t) =
[
ξ̇px(t), ξ̇py (t)

]T
=

[vpx
(t), 0]

T . The pursuers are controlled to capture the
evader.

C. Interaction Dynamics

Likewise, let ξe(t) =
[
ξex(t), ξey (t)

]T ∈ R2 represent the
evader’s position at time t.
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This indirectly leads to an increase in the dynamics to which the evader is
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the pursuit formation shrinks to the capture condition.

Definition 2. The evader’s dynamics concerning a particular
pursuer at the i-th level are governed by a continuous,
monotonically decreasing function σ(t) : x(t) → σe(t).
Figure 5 illustrates the dynamics function of the evader.
This function [22] initiates at a value σmax and gradually
diminishes towards 0+ over a finite interval

σe(x) =


σmax, x ≤

√
β

2

αx exp

(
−x2

β

)
, x >

√
β

2

(2)

where the maximum effort with which the evader evades
a pursuer is σmax = α

√
β
2e . The parameter β shows the

extent of the pursuer’s proximity before the evader avoids the
pursuer with maximum effort. The limit

√
β
2 represents the

boundary value from maximum effort σmax to the beginning
of the decline. rd stands for the distance at which the pursuer
becomes detectable to the evader.

Specific behavioral parameters α and β are involved.
These parameters collectively define how vigorously the
evader strives to flee as the distance to the pursuer dimin-
ishes.

III. COOPERATIVE FLEXNET WITH FOV

In this section, the method for the formation generation
and FlexNet pursuit stage is presented. In the first stage, the
pursuers converge their distance to the evader through the
FOV and achieve initial formation generation.

A. Formation Generation

Consider a multi-agent system consisting of n agents
moving in a 2D environment, and assume that each pursuer
can use a sensor. Unlike the recently proposed FOV [23],
[19], the characteristics of the potential field function are
utilized. We assume that all FOVs are continuously rotating,



regardless of the specific movement of the equipped pursuer.
In other words, we assume that each FOV-equipped pursuer
rotates the FOV with a constant angular velocity as it
performs its movement. Firstly, the dynamics of the pursuer

ξ̇p(t) = vp(t), ε̇p(t) = ωp(t) (3)

where ξp, εp denote the position and velocity of the pursuer
in the movement. Also, εp ∈ (0, 2π] represents the direction
of the bisector of FOV of the pursuer, while ωp is the angular
velocity of the rotating FOV A. The neighbourhood of the
pursuer equipped with FOV A at time t is defined as follows

N (t) =

{
e ∈ R2

∣∣∣∣|f (ε(t)− εp(t))| ≤
ϑ

2

}
(4)

where ε = arctan
(

ξey−ξpy
ξex−ξpx

)
, εp = arctan

(
vpy
vpx

)
, and f(·)

is defined as follows

f(x) =

{
x+ π, if |x| ≤ 0

x− π, if |x| > 0
(5)

An example of a pursuer equipped with a FOV to detect
an evader is illustrated in Fig. 3.

Next, we will find a lower bound on the angular velocity
of the FOV based on the dynamics of the pursuer and evader
in Definition 2, and make the pursuers and evaders converge
to satisfy the distance λ captured by FlexNet. In order to
reach this goal, we first need some important lemmas.

Lemma 1. Consider two agent pursuer and evader with
dynamics described by (3) at time t. Let pursuer be fixed
and assume that the evader moves with velocity σe that is
less than σmax. If the angular velocity ωp is lower-bounded
by some constant ω0 and ∥ξe(t0)−ξp(t0)∥ > 2πσmax

ω0
at time

t0, there exists t ∈ [t0, t0 + T ] such that ξe ∈ A(t) for all
T ≥ 2π

ω0
. In other words, the evader can be detected by FOV

of pursuer in the interval [t0, t0 + T ].

Proof. Reconsider the inner and outer sides of the arc area
based on the relative positional relationship between two
agents defined as follows

A(t) =
{
ξp ∈ R2

∣∣(ξp − ξip(t)
)
·
(
ξe(t)− ξip(t)

)
≥ 0

}
A(t) =

{
ξp ∈ R2

∣∣(ξp − ξip(t)
)
·
(
ξe(t)− ξip(t)

)
< 0

} (6)

Let the pursuer be fixed and point ξe(t0) be the position
of the evader at time t0. Define the angle of the evader with
respect to the x-axis as γe and ξe(t0 + T ) as the position of
the evader at time t0 + T . Define d0 = ∥ξe(t0)− ξp(t0)∥ as
the distance between the pursuer and the evader at time t0.
As shown in Fig. 3, we can find that the shortest distance
that the evader leaves the FOV A in the time interval T is
denoted as d1 = ∥ξe(t) − ξp(t)∥ sin

(
ϑ
2 − (γe − εp)

)
. Since

the maximum of the evader’s velocity is σmax for all t,
the minimum time required for ξe to leave the arc area A
and arrive at an arbitrary position in A is Tmin = d1

σmax
.

Therefore, it is guaranteed that ξe(t) ∈ A for all t ∈
[t0, t0 + Tmin]. On the other hand, the pursuer covers the
whole A via its rotating FOV over the time interval T if it
rotates at least 2π radians, regardless of the radian angle εp.

That means that it takes at most Tmax = 2π
ω0

for A to achieve
this objective. It then follows that the pursuer is able to detect
the evader at a time instant t ∈ [t0, t0 + T ] if the inequality
Tmin > Tmax holds for all T ≥ Tmax. It is straightforward
to conclude that by choosing d1 > 2πσmax

ω0
the inequality

Tmin > Tmax holds provided T ≥ 2π
ω0

. Therefore, 2πσmax

ω0

can be considered as a lower bound on the distance between
the pursuer and the evader at time t0 as follows

∥ξe(t)− ξp(t)∥ sin
(
ϑ

2
− (γe − εp)

)
>

2πσmax

ω0
(7)

Therefore, if Eq. (7) holds for the pursuer and the evader
at an arbitrary time t while the pursuer is stationary and
the velocity of the evader is less than σmax at all time, it
is guaranteed that there is a time instant t ∈ [t0, t0 + T ]
at which the pursuer detects the evader via its finite FOV
provided A rotates with an angular velocity ωp > ω0. Also,
the time interval is at least T = 2π

ω0
. This lemma holds. ■

Next, we will analyse the case when the pursuer is not
fixed and the pursuer is further away from the evader.

Lemma 2. Let the velocities of pursuer and evader satisfy
the inequalities vp(t) ≥ vmin and σe(t) ≤ σmax at all time.
If d1 < ∥ξe(t) − ξp(t)∥ sin

(
ϑ
2 − (γe − εp)

)
at time t and

angular velocity of FOV of the pursuer is lower-bounded by
ω0 = 2π(vmin−σmax)

d1
, it is guaranteed that there exist t ∈

[t0, t0 + T ] such that ξe ∈ A(t) for all T ≥ d1

vmin−σmax
.

Proof. Consider a frame centered at the pursuer, and denote
the velocity of the pursuer and the evader, thus vp(t) −
σe(t) ≥ vmin−σmax for all t. Let the distance d1 < ∥ξe(t)−
ξp(t)∥ sin

(
ϑ
2 − (γe − εp)

)
, where d1 = 2π(vmin−σmax)

ω0
. It

then follows from Lemma 1 that for any ωp > ω0 =
2π(vmin−σmax)

d1
, there exist t ∈ [t0, t0 + T ] such that the

pursuer detects the evader at time t for any T ≥ d1

vmin−σmax
.

Thus, the minimum values of ω and T are determined based
on the lower bound of the pursuer’s velocity and the upper
bound of the evader’s velocity and the minimum distance d1
of the evader from the boundary of the FOV at time t. ■

Next, the most significant part of this section, i.e., detect-
ing the evader through the pursuer with FOV and converging
to a distance λ.

Theorem 1. Consider a pursuit-evasion game consist of the
evader and the pursuer with the finite 2D arc angular FOV.
Let the pursuer apply the following control law

vp(t) = K(ξ) [(ξe(t)− ξp(t)) + ϵ] (8)

where
K(ξ) =

ς

∥ξe(t)− ξp(t)∥

and ϵ and ς are two positive constants. Assume that the
angular velocity of FOV of the pursuer satisfies the inequality
ωp > ω0, where ω0 = 2π(ς−σmax)

λ for the distance λ. Then,
the distance of the pursuer and the evader will converge to
λ.



Proof. Under the control law (8) and the dynamics function
(2), it is straightforward to show that the lower bound of
the pursuer’s velocity and the upper bound of the evader’s
velocity for all t

∥vp(t)∥ =

∥∥∥∥ ς [(ξe(t)− ξp(t)) + ϵ]

∥ξe(t)− ξp(t)∥

∥∥∥∥
=

ς [∥(ξe(t)− ξp(t))∥+ ϵ]

∥ξe(t)− ξp(t)∥
> ς

∥σe(t)∥ ≤ α

√
β

2e
= σmax

∥vp(t)∥ − ∥σe(t)∥ > ς − σmax

(9)

In addition, according to the relevant conclusions of the
theory of graphs in Ref. [16], the maximum distance between
the pursuer and the evader during the movement satisfies the
inequality

max∥ξe(t0)− ξp(t0)∥ ≤ 2d0

max∥ξe(t0)− ξp(t0)∥ sin
(
ϑ

2
− (γe − εp)

)
≤ 2d1

(10)

from Lemma 2, the distance d0 of the pursuer and the evader,
the shortest distance d1 that the evader leaves the FOV A, the
velocity bound ς − σmax, the angular velocity lower bound
ω0 are related by ω0 = 2π(ς−σmax)

d1
, for T > d1

2(ς−σmax)
.

Substituting d1 = 2π(ς−σmax)
ω0

max∥ξe(t0)− ξp(t0)∥ sin
(
ϑ

2
− (γe − εp)

)
≤ 4π(ς − σmax)

ω0

(11)

A sufficient condition to guarantee that the distance of the
pursuer and the evader converge to λ is that

4π(ς − σmax)

ω0
≤ 2λ (12)

This means that in order to make the distance between the
pursuer and the evader converge to λ, we can make the lower
bound of the angular velocity of the pursuer’s FOV large
enough, as follows

ω0 =
2π(ς − σmax)

λ
(13)

Therefore, Theorem 1 holds. ■

Thus, the seeking stage of this paper is complete when
the distance between the pursuer and the evader converges
to λ. Next, the most important stage of the paper, the FlexNet
pursuit stage, will be introduced.

B. FlexNet Pursuit

We first analysis a basic case where there are three
pursuers and one evader. As shown in Fig. 6, three pursuers
are evenly distributed on the half-circle of the formation. As
the formation is approaching the evader, the radius of the
formation gradually decreases until the evader is circled in
a very small range. The whole process is divided into two
steps. First, the virtual leader move forward and approaches

process a) process b)

*( )
e
x t

1q

c
( )
e
x t

Fig. 6. Time-varying FlexNet pursuit in two processes.

the evader. When the evader is caught up by the virtual
leader, the leader pursuers start moving from up and down so
that the whole formation "shrinks" to make a circling hunt.

Theorem 2. FlexNet pursuit needs to satisfy two processes:
a) There exists an angle θ1(t) ∈

(
θc,

π
2

)
, where θc =

arccos( 1−η(t)
2 ), the evader coincides with the virtual leader

and the size of the formation starts to decrease.
b) There exists a time tc when the formation stops shrink-

ing and starts moving forward again, which satisfies that at
time tc, θ1(t) ∈

(
θc,

π
2

)
.

Proof. a) we let D(t) = ξe(t)− ξvl(t) denotes the distance
between the evader and virtual leader, thus its differentiation
yields

Ḋ(t) = σ0(t) + 2σ1
e(t) cos [θ1(t)]− vpx

(t) (14)

For the process a) to be satisfied, we have

σ0(t) + 2σ1
e(t) cos [θ1(t)] < vpx(t) (15)

where t maximizes Ḋ(t). To satisfy vpx
(t)(m = 1) > σmax,

we may assume that

σ0(t) + 2σ1
e(t) cos [θ1(t)] < σmax (16)

where σ0(t) < σmax needs to be satisfied. By Eq. (2),

σ0(t) < σmax, when λ0 >
√

β
2 , then we re-update the

constraints

η(t)σmax + 2σ1
e(t) cos [θ1(t)] < σmax

σ1
e(t) cos [θ1(t)] <

[1− η(t)]σmax

2

(17)

where η(t) =
αD(t) exp

(
−D2(t)

β

)
σmax

∈ [0, 1) is a constraint
factor and after we add another constraint, thus

maxσ1
e(t) cos [θ1(t)] ≤ σmax cos [θ1(t)] <

[1− η(t)]σmax

2

cos [θ1(t)] <
1− η(t)

2
(18)

thus we can choose θ1(t) ∈
(
θc,

π
2

)
, such that the inequality

(18) holds. Therefore, the process a) of Theorem 2 holds.
b) In this process, the virtual leader position remains

unchanged and the evader continues to move ξ̇e(t) > 0, so
it is clear that θ1(t) < π

2 .
We propose a strategy shown in Fig. 6 that the leader

pursuer converges towards the virtual leader in process b) i.e.
ξmpy

(t) → 0. The direction of motion of the other pursuers
also points towards the virtual leader until the time tc.
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Fig. 7. Scenario 1: The capture process of an evader by three pursuers. The stars mark the starting positions of the pursuers and the evader. The trajectories
of the evader and pursuers are solid and dashed lines, respectively.
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Fig. 8. Scenario 2: Simulation results for another pursuit-evasion games with different initial positions.

Assume θ1(t) > θc, and we have

tan θ1 =
ξmpy

(t∗)− vpy
(t)∆t

D(tc)
> tan θc

tc < t∗ +
ξmpy

(t∗)−D(tc) tan θc

vpy (t)

(19)

with

D(tc) =
(
σ0(tc) + 2σ1

e(tc) cos [θ1(tc)]
)

exp

[
−W0

(
−
2
(
σ0(tc) + 2σ1

e(tc) cos [θ1(tc)]
)2

α2β

)
/2

]
/α

(20)
where W0 is the Lambert function and ∆t = tc − t∗. When
tc ∈

(
t∗, t∗ +

ξmpy (t∗)−D(tc) tan θc

vpy (tc)

)
is choosen, the process

b) of Theorem 2 holds. Therefore, Theorem 2 holds. ■

When the number of the pursuers is m, from Theorem 2,
we have

σ0(t) + 2

m∑
i=1

σi
e(t) cos [θi(t)] < vpx

(t) (21)

where t maximizes Ḋ(t), we also need to satisfy vpx
(t)(m =

n) < vpx
(t)(m = 0), thus

σ0(t) + 2

m∑
i=1

σi
e(t) cos [θi(t)] < σmax (22)

where σ0(t) < σmax needs to be satisfied for the central

pursuer. By Eq. (2), σ0(t) < σmax, when λ0 >
√

β
2 . We

write the inequality (22) as

η(t)σmax + 2

m∑
i=1

σi
e(t) cos [θi(t)] < σmax

m∑
i=1

cos [θi(t)] <
1− η(t)

2

(23)

because θ1 < θ2 < . . . < θm, i.e. cos θ1 > cos θ2 > . . . >
cos θm for all time t. This shows that n is finite and θ1 needs
to be sufficiently large when η(t) ∈ [0, 1).

IV. SIMULATION

The effectiveness of the proposed FlexNet Capture strategy
is verified through simulation, where the direction of motion
of the evader is controlled by a human, as far away from
the pursuer as possible. The pursuit-evasion games is played
on a square region [0, 12] × [0, 12]. We set the pursuer and
evader parameters α = 1.5, β = 0.15 and v = 0.225m/s in
this simulation.

In the first scenario shown in Fig. 7, assuming α, β,
and v are specified alongside r = 0.75m and R =
0.75/(2 sin(π/8)), all three pursuers successfully capture the
evader simultaneously. This success aligns with the condition
r = 0.75 > xp = 0.531 >

√
0.15
2 ≈ 0.274. The pursuers

used the proposed cooperative FlexNet strategy. In Fig. 7(a),
we set the initial positions of the evader surrounded by
the pursuers in the pursuit-evasion region. In Fig. 7(b),
three pursuers form an initial formation structure, and it
follows from Theorem 2 that the first step in the capture
strategy is to stop the leader pursuers (pursuer 2 and pursuer
3) from moving in the x-axis direction. In Fig. 7(c), the
leader pursuers of the open formation converge horizontally,
reducing the distance from the evader in the y-axis direction.
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Fig. 9. The distances between each pursuer and evader over time.
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Fig. 10. Scenario 3: Multiple pursuers capture a single evader When the evader’s initial position is not surrounded by pursuers. (a) Three pursuers, (b)
Five pursuers.

In Fig. 7(d), by repeating this convergent motion, the evader
eventually enters the virtual leader in the open formation
and is captured. This satisfies the capture condition we
proved in Theorem 2. Figure 8 represents another example
of a single evader captured by three pursuers with different
initial positions. From Figs. 8(a)-8(d), it can be seen that the
proposed strategy is still effective after the evader changes its
motion from x-axis direction to y-axis direction. In addition,
our central pursuer is not fixed, depending on the initial
position of the pursuer and the state after the movement.
Figure 9 shows the distances between three pursuers and
evader over time. By comparing Figs. 7 and 8, we can
observe that the initial positions of the pursuers affect the
capture time.

Further, we continue extending our strategy to other
situations, allowing the evader to move arbitrarily in the
2D environment. Compared with the previous constrained
motion of the evader only extending in the single direction,
we now set the evader to be able to move arbitrarily within
the 2D environment. As shown in Fig. 10(a), when there are
three pursuers, the evader is less affected by the pursuers and

have stronger movement ability, although the pursuers have
faster velocity. It takes some time before the evader can get
inside the FOV of the pursuers. As shown in Fig. 10(b), when
the number of pursuers increases to 5, we exploit the FOV
of the pursuers and converge the distance to λ. In the second
stage, when the pursuers form an open formation of FlexNet,
they enter the pursuit stage, and the formation captures the
evader.

V. CONCLUSION

In this paper, a novel capture method with an open-
formation configuration called "FlexNet Capture" in pursuit-
evasion games is described. The whole framework is de-
coupled into three stages: Formation generation and FlexNet
pursuit. In the first stage, the FOV is introduced to find
the evader compared to the previous work. Unlike closed
formations, an open formation allow for better flexibility and
reduce cost by using as few pursuers as possible to capture
the evader in the second stage. Meanwhile, the mathematical
model for the FOV to extend the agent’s whole motion is
also established. Simulation results show that the proposed



method is capable of effective capture. In the future, we
extend the proposed method to the 3D space and will verify
it on a physical platform.
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